Extraction of 137Cs from Cetraria islandica lichen with water

Article in Journal of the Serbian Chemical Society - May 2006
DOI: 10.2298/JSC0605565C · Source: DOAJ

3 authors, including:

Ana Cuculovic
Institut za primenu nuklearne energije, Zemun
35 PUBLICATIONS 132 CITATIONS

Dragan Veselinović
University of Belgrade
171 PUBLICATIONS 660 CITATIONS

Some of the authors of this publication are also working on these related projects:

Use of marginal lands for growing bioenergy grass Miscanthus x giganteus View project

INSTRUMENTAL ANALYSIS OF BIOFLAVONOIDS IN PHARMACEUTICAL FORMULATIONS AND BIOFLUIDS View project

All content following this page was uploaded by Ana Cuculovic on 21 May 2014.
The user has requested enhancement of the downloaded file.
NOTE

Extraction of 137Cs from *Cetraria islandica* lichen with water

ANA ĆUČULOVIĆ*, DRAGAN VESELINOVIĆ# and ŠČEPAN S. MILJANIĆ1

INEP – Institute for the Application of Nuclear Energy, Banatska 31b, 11080 Zemun and
1University of Beograd, Faculty of Physical Chemistry, 11001 Beograd, P. O. Box 137, Serbia
and Montenegro (e-mail: anas@inep.co.yu)

(Received 18 April, revised 14 September 2005)

Abstract: Extraction of 137Cs sorbed in samples of *C. islandica* using distilled water
was investigated. An equation describing the reduction of the 137Cs content in a dry
lichen sample by the number of water volumes used for successive extractions was
defined. The possibilities of the existence of two different types of 137Cs sorption in
the lichen was established.

Keywords: 137Cs sorption, extraction of 137Cs from lichen, *C. islandica* lichen.

INTRODUCTION

Lichen, non-vascular plants with large absorbing surfaces, are good sensors
(bioindicators)1–4 of atmospheric pollution with radionuclides, pesticides and
heavy metals and quantitative indicators of pollution (biomonitors) resulting from
their morpho-physiological characteristic.5–9

Before the Chernobyl accident in 1981, the levels of 137Cs activity were mea-
ured in lichen growing in hunting grounds on the territory of Bosnia and Herze-
govina, found to lie between 297 and 854 Bq/kg of dry lichen, and in 1985 they
were between 397 and 696 Bq/kg.10 After the accident, the average levels of 137Cs
activity in lichen on the territory of SFRY were significantly higher in *Evernia pru-
nastri* and *Cetraria islandica* lichen, and in 1987 they were 16870 and 10407
Bq/kg and in 1988 7833 Bq/kg and 7442 Bq/kg.11,12

Lichen are applied after their collection and drying, so they can be considered a
non-alive system of biological origin which can be used as raw material of starting ma-
terial for applications in medicine, the food industry, etc.13–15 In addition, the remains
of lichen in the natural environment, after dying, can be secondary sources of pollution
with cesium isotopes, due to the extraction of this element with water from rainfall
(rain, snow), their transfer into the environment and also their breaking-up and distribu-
tion. Corresponding data were not found in literature.

* Corresponding author.
Serbian Chemical Society active member.
doi: 10.2298/JSC0605565Ć

565
The purpose of this work was to establish the role of water as the basic extractant in 137Cs extraction from dry lichen, in the natural environment and in application. Therefore the dried lichen – distilled water system was investigated.

EXPERIMENTAL

Apparatus

In this work the following instruments were used: a) an ORTEC-AMETEK gamma spectrometer with 8192 channels, a resolution of 1.65 keV and an efficiency of 34% at 1.33 MeV 60Co, with a measurement error below 5.0% and b) a METLER analytical balance with a precision of 0.1 mg.

Chemicals

Distilled water and standard filter paper were used.

Lichen

Bushy lichen *Cetraria islandica* collected on the Sinjajevina Mountain in 1994, destined for production, were air – dried and preserved in porous paper bags.

Sample preparation

Lichen were cleaned from any visually noticeable impurities, mechanically chopped into small pieces with scissors, and air – dried until a constant mass was achieved.

Extraction procedure

Each sample was extracted 5 times, successively, using the following procedure: distilled water (200 cm3) at room temperature (22 °C) was poured over 10.0 g of dry sample after measurement of its activity, and left for a certain extraction time with occasional mixing. After filtration, the sample was air – dried until a constant mass was achieved. Its activity, as well as the mass, were measured and the next extraction was performed using the same procedure. The extraction times amounted to 1, 3, 5, 7, 17 and 24 h.

For each sample, the extraction procedure was repeated twice, *i.e.*, 70 extractions were made. Extraction at elevated temperature was performed using a) distilled water heated to 100 °C before extraction and b) distilled water heated to 100 °C and maintained at this temperature during the extraction. In case a), the extraction times were 10 and 20 minutes with two successive extractions, while for b) only one extraction lasting for 10 minutes was carried out. Due to denaturation of sample, subsequent extractions could not be performed.

Measurement of the 137Cs activity in the sample

Before the first extraction and after every subsequent extraction, the filtrated and dried lichen sample was placed into a plastic vessel with a diameter of 7.5 mm and a volume of 150 cm3. The activities of 137Cs were measured under the same geometric conditions for 1 h and they were used to calculate the specific activities (Bq/kg) of every sample.

The mass of the sample was reduced after extraction by 0.6% (average value), *i.e.*, less than the error of the measurement.

RESULTS AND DISCUSSION

The 137Cs content in each sample was expressed as a percentage of the remaining cesium in the sample after each extraction in relation to its content in the starting sample. It was obtained by expressing the sample activity after each extraction as a percentage of the activity of the starting sample. The results of measurements are given in Tables I and II as mean values with a standard measurement
error of 1.77 % for the samples extracted at room temperature and at 100 ºC, respectively.

TABLE I. Activity* of 137Cs (Bq/kg) in the C. islandica lichen before extraction and the percentage of the remaining 137Cs after each of five consecutive water extractions (in relation to the starting content). Temperature ≈ 22 ºC. Measurement error 1.77 %

<table>
<thead>
<tr>
<th>Extraction time h</th>
<th>Starting activity of 137Cs in the lichen before extraction Bq/kg</th>
<th>Total extracted 137Cs from the lichen %</th>
<th>Percentage of remaining 137Cs in the lichen after each extraction in relation to the starting content</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1875</td>
<td>55.8</td>
<td>69.6 62.1 57.0 51.5 44.2</td>
</tr>
<tr>
<td>3</td>
<td>2479</td>
<td>57.4</td>
<td>70.3 57.9 49.1 49.0 42.6</td>
</tr>
<tr>
<td>5</td>
<td>2497</td>
<td>50.5</td>
<td>68.7 58.2 53.9 49.7 49.5</td>
</tr>
<tr>
<td>7</td>
<td>2562</td>
<td>49.0</td>
<td>69.6 56.1 53.5 51.0</td>
</tr>
<tr>
<td>17</td>
<td>2771</td>
<td>50.5</td>
<td>72.2 55.2 55.1 54.8 49.5</td>
</tr>
<tr>
<td>19</td>
<td>2438</td>
<td>51.2</td>
<td>72.2 57.2 53.9 53.7 48.8</td>
</tr>
<tr>
<td>24</td>
<td>2596</td>
<td>59.6</td>
<td>54.4 45.2 45.1 44.3 40.4</td>
</tr>
</tbody>
</table>

* Average value

TABLE II. Activity* of 137Cs (Bq/kg) in the C. islandica lichen before extraction and percentage of remaining 137Cs after extraction with water a) previously heated to 100 ºC and b) maintained at 100 ºC

<table>
<thead>
<tr>
<th>Heating method</th>
<th>Extraction time min</th>
<th>Starting 137Cs activity before extraction Bq/kg</th>
<th>Percentage of remaining 137Cs in the lichen in relation to the starting content</th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td>10</td>
<td>1897</td>
<td>44.6 9.6</td>
</tr>
<tr>
<td>a)</td>
<td>20</td>
<td>2365</td>
<td>42.0 11.1</td>
</tr>
<tr>
<td>b)</td>
<td>10</td>
<td>2243</td>
<td>26.4 –</td>
</tr>
</tbody>
</table>

* Average value

The changes of the 137Cs content in the sample with the number of extractions for experiments performed at room temperature and extraction times of 1, 3, 7 and 24 h are shown in Fig. 1. The forms of the curves for all other employed extraction times are of the same type.

The curves obtained using the Origin 7.0 software indicate an exponential dependence of the remaining amount of 137Cs, as well as of the amount extracted on the number of successive extractions. This can be explained by the fact that in a solid state–solution system, the amount of sorbed substance is determined by a distribution coefficient, regardless of whether the sorption–desorption mechanism is based on physical or chemical sorption or ionic exchange. According to this, the extraction process of 137Cs is a desorption process.

For the lichen–extractant system, the ratio between the amount of substance in the solid (C_s) and liquid (C_l) phase are determined by a distribution coefficient D:

If a series of consecutive extractions of a substance sorbed in the solid phase is performed, the amount of sorbed substance is reduced. For successive extractions with equal volumes of extractant, the change of the sorbed substance in dependence on the number of extractions is given by:

\[-dC_x/dn_x = kVC_x\] \hspace{1cm} (2)

where \(dC_x\) is the change in the amount of sorbed substance, \(dn_x\) is the change in the number of successive volumes of the extractant, \(k\) a constant, \(V\) is the extractant volume and \(C_x\) is the amount of the sorbed substance in the solid phase. Under given experimental conditions using the same basic volume of extractant, \(kV = a = \text{const.}\) After integration in the limits of \(C_0\) to \(C_x\) and 0 to \(n_x\), the following expression is obtained:

\[C_x = C_0 \exp[-an_x]\] \hspace{1cm} (3)

i.e., in the logarithmic form:

\[\ln C_x = \ln C_0 - an_x\] \hspace{1cm} (4)

From the above equation, it follows that the dependence of the logarithm of the amount of sorbed substance in the solid state is a linear function of the number of successive volumes used during the extraction. This conclusion can be applied to a real system only if one type of sorption exists, or if one type is dominant and hence the other types can be ignored. Otherwise there will be deviations from the straight line. These deviations show that the sorbed substance can simultaneously be bound to the sorbent by various types of sorption. According to Equation (4), the value \(C_0\) represents the amount of sorbed substance before the onset of extrac-
tion and can be obtained by extrapolation of the straight line representing Equation (4) to $n_x = 0$. In the case when only one type of sorption exists, this straight line is identical to the total content of sorbed substance. If other types of sorption exist, the value obtained by extrapolation of the straight line according to Equation (4) gives a part of the total amount of sorbed substance. Simultaneously, this reduced value of C_0 obtained by extrapolation indicates that different types of sorption of the observed substance exist.

Fig. 2. 137Cs content/%, in the sorbent (C. islandica) as a function of the number of consecutive water extractions (n_x), according to Equation (4), for an extraction time of 1h.

Fig. 3. 137Cs content/%, in the sorbent (C. islandica) as a function of the number of successive water extractions (n_x), according to Equation (4), for an extraction times of 1–3 h, 2–7 h, 3–24 h.

The curves obtained using the data from Table I are shown in Figs. 2 and 3. When an extraction time of 1 h was used, the obtained change of $\ln C_x$ with n_x was
in accordance with Equation (4) (Fig. 2). In all other cases when longer extraction times were used, there are deviations from the linear dependence, as can be seen in Fig. 3, which shows representative curves for extraction times of 3, 7 and 24 h. This indicates that there are at least two types of 136Cs binding in the examined lichen. The extraction process which is dominant is at the same time the fastest. As the lichen was picked 8 years after the Chernobyl accident, the possibility that the first fast extraction process involves mechanically remaining dust particles containing 137Cs can be, with certainty, excluded since such particles would have been washed off by rainfall during the ensuing years. The existence of another slower process (or several of them) indicates that 137Cs was sorbed in different ways in the lichen. This was confirmed by determining C_0 through extrapolation of the straight line in Fig. 2. The obtained value of C_0 was 73.4 % of the total amount of sorbed 137Cs.

The obtained results indicate the possibility of using $C. islandica$ in the region of its growth to obtain an indication of the contamination of the area with 137Cs. However, its application for other purposes is not possible since the amounts of 137Cs remaining after five 24-hour extractions were quite high (> 40 %) (Table I).

The results obtained at elevated temperatures (Table II) indicate a significant increase in the extraction, especially if the extraction took place at 100 ºC. However, further experiments were not performed because structural destruction of the plant occurred. The results obtained show that a temperature increase aids the extraction of 137Cs.

Acknowledgement: The Ministry for Science and Environmental Protection of the Republic of Serbia financed this work, project No. ON 142039.

REFERENCES
3. K. J. Puckett, New Phytol. 72 (1973) 329
4. The level of radioactive contamination of the environment and the irradiation of the population...

10. R. Kljajić, MSc Thesis, Faculty of Veterinary Medicine, University of Sarajevo, Sarajevo, 1981
11. A. Stanković MSc Thesis, Faculty of Physical Chemistry, University of Belgrade, Belgrade, 1994