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Abstract: Vegetation in East Antarctica, such as moss and lichen, vulnerable to the effects of climate 

change and ozone depletion, requires robust non-invasive methods to monitor its health condition. 

Despite the increasing use of unmanned aerial vehicles (UAVs) to acquire high-resolution data for 

vegetation analysis in Antarctic regions through artificial intelligence (AI) techniques, the use of 

multispectral imagery and deep learning (DL) is quite limited. This study addresses this gap with 

two pivotal contributions: (1) it underscores the potential of deep learning (DL) in a field with no-

tably limited implementations for these datasets; and (2) it introduces an innovative workflow that 

compares the performance between two supervised machine learning (ML) classifiers: Extreme Gra-

dient Boosting (XGBoost) and U-Net. The proposed workflow is validated by detecting and map-

ping moss and lichen using data collected in the highly biodiverse Antarctic Specially Protected 

Area (ASPA) 135, situated near Casey Station, between January and February 2023. The imple-

mented ML models were trained against five classes: Healthy Moss, Stressed Moss, Moribund Moss, 

Lichen, and Non-vegetated. In the development of the U-Net model, two methods were applied: 

Method (1) which utilised the original labelled data as those used for XGBoost; and Method (2) 

which incorporated XGBoost predictions as additional input to that version of U-Net. Results indi-

cate that XGBoost demonstrated robust performance, exceeding 85% in key metrics such as preci-

sion, recall, and F1-score. The workflow suggested enhanced accuracy in the classification outputs 

for U-Net, as Method 2 demonstrated a substantial increase in precision, recall and F1-score com-

pared to Method 1, with notable improvements such as precision for Healthy Moss (Method 2: 94% 

vs. Method 1: 74%) and recall for Stressed Moss (Method 2: 86% vs. Method 1: 69%). These findings 

contribute to advancing non-invasive monitoring techniques for the delicate Antarctic ecosystems, 

showcasing the potential of UAVs, high-resolution multispectral imagery, and ML models in remote 

sensing applications. 
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1. Introduction 

Due to the extreme climate conditions, Antarctica’s terrestrial ecosystems are com-

monly dominated by moss and lichen vegetation. Vegetation is restricted to ice-free areas 

and is consequently distributed primarily in coastal regions and inland nunataks where 

ice-free land is available [1]. The Windmill Islands coastline in East Antarctica is home to 

some of the largest “moss forests” on the continent. These moss forests experience ex-

tremes of temperature, light and water [2–4]. The growth and health of Antarctic moss 

beds relies heavily on the availability of liquid melt water from snow and ice, which is 

unreliable from year to year and over the course of the summer season [3]. The supply of 

liquid water is likely to become more unreliable for Antarctic mosses under continuing 

climate change, as snow banks retreat and precipitation patterns change [5]. Long-term 

monitoring has revealed a regional drying trend in the Windmill Islands that has resulted 

in changes in moss community assemblages and moss health in this region [6]. Specifi-

cally, as the region dries, green healthy moss becomes red and brown and finally turns 

black and becomes encrusted with lichens [4]. Remote monitoring techniques are required 

in order to accurately map and monitor changes in these ecosystems [4]. 

Traditional remote sensing, particularly satellite-based, has been instrumental over 

the decades but is now complemented by the emergence of consumer grade advanced 

sensors mounted on Unmanned Aerial Vehicles (UAVs) offering unprecedented detail [7–

9]. This transition marks a significant advancement in monitoring techniques, with UAVs 

providing centimetre scale spatial resolution [10]. UAVs have been used in remote sensing 

to detect and segment numerous types of objects and different environments, such as ag-

ricultural fields, urban areas, forests, and bodies of water, providing valuable data for var-

ious applications including environmental monitoring, disaster management, and infra-

structure inspection [11–17]. These technological tools, often accompanied by classical ma-

chine learning (ML) and deep learning (DL) methodologies, enhance the accuracy and ef-

ficiency of different vegetation mapping [18–23]. Studies have demonstrated the effective-

ness of employing DL for accurately monitoring and classifying these delicate species like 

moss and lichen in diverse environmental settings [24–26]. 

The spatial-temporal monitoring of the Antarctic ecosystem has seen a shift towards 

remote sensing as an alternative to conventional methods, particularly with the wide-

spread availability of high-resolution satellite imagery [10,27–30]. In particular, the last 

decade has witnessed an increase in UAV use in Antarctic research, offering a unique per-

spective on monitoring and mapping of vegetation [29,31–33]. In recent years, the integra-

tion of UAVs equipped with RGB, multispectral, and hyperspectral cameras have revolu-

tionised vegetation mapping in Antarctica [34–38]. Mapping vegetation in the Antarctic 

environment through remote sensing techniques is constrained by the diverse and uneven 

nature of its surface coverage. This variability includes sparse vegetation, isolated indi-

viduals scattered amidst soil and rocks, small communities forming biocrusts on soil or 

rock, and more extensive vegetation mats in larger communities [10]. Such variability 

makes drones an attractive option due to the high resolution of imagery compared to sat-

ellites, but also means fewer studies have integrated UAV and AI for monitoring and map-

ping vegetation in the Antarctic environment [27,28,39]. In addition, only a limited num-

ber of studies have incorporated multispectral sensors to enhance the precision and accu-

racy of vegetation mapping in various environments [40,41]. 

Limited attention has been paid to the application of UAV multispectral data in clas-

sifying moss health classes including healthy moss, stressed moss, and moribund moss 

using DL techniques. Gaps persist, including the limited use of multispectral imagery and 

especially the need for sufficient ground truth data for robust modelling. This research 

addresses these gaps by employing high-resolution RGB and multispectral UAV data and 

leveraging AI for automatic classification and mapping of moss health in Antarctica. The 

primary objectives of this project were to develop and validate a methodology applicable 

to fragile environments, with a specific focus on identifying health risks and supporting 

conservation initiatives. The project aimed to assess the effectiveness of two ML methods 
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for semantic segmentation of drone remote sensing data: (1) Extreme Gradient Boosting 

(XGBoost), a decision tree-based classifier; and (2) U-Net, a convolutional neural network 

(CNN)-based classifier. This paper provides additional validation for the workflow pre-

sented, as it now encompasses the processing of multispectral data obtained during the 

data collection campaign [39]. In summary, this research contributes to the evolving land-

scape of Antarctic vegetation monitoring by utilising advanced UAV technologies and AI 

methodologies. By addressing existing gaps, particularly in multispectral data usage and 

ground truth validation, the project aims to enhance the accuracy and effectiveness of 

monitoring changes in Antarctic moss health in the face of climate change. 

The methods are presented in two sections. Section 2 focuses on data collection and 

curation, while Section 3 investigates ML models designed for vegetation mapping. Re-

sults are presented in Section 4, followed by discussion (Section 5), and conclusion and 

recommendations for future work in Section 6. 

2. Data Collection and Curation 

Figure 1 depicts the proposed process pipeline used to prepare the data for develop-

ing the segmented maps using both XGBoost and U-Net classifiers. This process is broken 

down into five components: data acquisition, data pre-processing, data labelling, region 

of interest (ROI) extraction, and statistical analysis. 

 

Figure 1. Processing pipeline of data preparation for classification of health status of moss and lichen 

in Antarctic environment. 
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• Step 1: Data Collection 

2.1. Study Area 

This study was conducted within Antarctic Specially Protected Area (ASPA) 135 

(66°16’60″ S, 110°32’60″ E), located in the Windmill Islands region of East Antarctica as 

seen in Figure 2. This area is extremely rich in moss and lichen communities and spans an 

estimated area of 0.28 km2. The ASPA was visited three times between 2 January and 2 

February 2023. Trips to the ASPA were restricted to periods between 3:30 and 6:30 pm 

(UTC+9) when light conditions were optimal. The average temperature during these visits 

was −2 °C, with typical wind gusts measuring 5.14 m/s. 

 

Figure 2. Geographical representation of ASPA 135 outlined by the red polygon, and the study area 

delineated by the green polygon on the map. 

2.2. Airborne Data Acquisition 

Aerial data collection was carried out using a custom built BMR3.9RTK UAV devel-

oped by SaiDynamics Australia (Gold Coast, Australia). This quadrotor UAV, designed for 

extreme conditions, accommodates a multi-sensor payload of up to 7 kg (Table 1). The 

multi-sensor payload comprises a MicaSense Altum (AgEagle, Wichita, KS, USA) multi-

spectral camera and a Sony Alpha 5100 (Sony Group Corporation, Tokyo, Japan) high-

resolution RGB camera (Table 2). The ASPA was surveyed with the BMR3.9RTK using 

lawnmower patterns with an above ground level (AGL) height of 70 m. Imagery side and 

front overlap used was 80%, and the horizontal speed was 3.6 ms−1. Ground sampling 

distances (GSD) of multispectral and RGB sensors were 3.2 and 1.5 cm/pixel, respectively. 

In addition to this, the DJI Mini 3 Pro was used to get ultra-high resolution RGB data 

(Table 1). 

Table 1. Key specifications of different aircraft used in this study. 

Specifications BMR3.9RTK DJI Mini 3 Pro 

Weight 
12 kg, 

Maximum take-off weight of 14 kg 
Less than 249 g 

Battery type Two six cell LiPo batteries Li-ion 

Flight time 30 min with dual payload capability 

34 min (with Intelligent Flight Battery meas-

ured while flying at 21.6 kph in windless con-

ditions) 
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Table 2. Key specifications of different sensors used in this study. 

Specifications MicaSense Altum Sony Alpha 5100 
DJI Mini 3 Pro 

Inbuilt Camera 

Number of bands 
Five multispectral and a thermal 

band 
Three Three 

Bands 

blue, green, red, red-edge, and 

near-infrared, short wave infrared 

(thermal) 

blue, green, red blue, green, red 

Resolution 
Multispectral: 3.2 megapixels (MPs) 

and Thermal: 320 × 256 pixels. 
24.3 MPs 48 MPs 

Field of view 50.2° × 38.4° 83° 82.1° 

2.3. Ground Truth Data Collection 

The ground truth data collection involved the collection of accurate geolocation data 

of moss within the study site exhibiting various health states, from healthy to stressed and 

moribund. Health states were classified through colour changes of moss [42]. Table 3 de-

tails the criteria defining moss health and outlines the process by which judgments were 

made based on colour observations. 

Table 3. Comprehensive overview of moss health states and descriptions. 

Health Status of Moss Description 

Healthy 

Moss in good health exhibits shades ranging from dark (ms_gr) 

to bright green (ms_bg), indicating healthy chloroplasts and 

plenty of chlorophyll. It is typically found in regions with con-

sistent meltwater availability. 

Stressed 

Moss undergoing stress experiences a reduction in chlorophyll 

pigments, appearing red or brown (ms_rd) due to the presence of 

carotenoids and other photoprotective pigments, as noted by Wa-

terman et al. (2018). Stressors such as drought or intense solar ra-

diation can contribute to this condition. However, if the stress is 

reversed, the moss turf has the potential to regain its green col-

our, facilitated by the formation of new leaves [4]. 

Moribund 

Intense or prolonged stress leads to the moribund state of moss, 

where leaves undergo pigment loss, rendering them grey in col-

our (ms_bw and ms_mm). Additionally, these stressed moss 

specimens may become encrusted with lichens. 

In conjunction with the UAV footage captured, the team collected 68 ground truth 

points on foot. GNSS RTK data was taken at ground truth points to georeference the UAV 

data. An industry standard Trimble GNSS system was used ensuring up to 2 cm accuracy 

on all ground truth points. By combining this high-precision GNSS technology with 

ground control points and the UAV’s RTK feature, the approach guaranteed precise align-

ment between aerial imagery and ground scans. This comprehensive strategy not only 

adhered to industry standards but also demonstrated a commitment to achieving the 

highest level of accuracy in geospatial data acquisition for the study. Figure 3 shows the 

study area and in Figure 4, the accurate depiction of ground truth points is highlighted as 

they overlay seamlessly on the RGB Orthomosaic, providing a visual reference for precise 

labelling. 
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Figure 3. Ground image of study area depicting distribution of moss and lichen vegetation. 

 

Figure 4. Ground truth points overlaid on RGB Orthomosaic: Healthy moss, characterised by a 

green colour, is labelled as ms_gr & ms_bg. Stressed moss, displaying shades of orange or red, is 

denoted as ms_rd. Moribund moss, with brown or black hues, is identified by the labels ms_bw & 

ms_mm. Featured lichen, include those with “hairy” (fructicose Usnea spp.) black, and crusty (crus-

tose) attributes, were classified using the labels lk_hr & lk_bk & lk_crusty. 

• Step 2: Image Pre-Processing 

The raw footage from the cameras was transformed into geometrically rectified im-

ages called orthomosaics. Image orthomosaics were obtained using Agisoft Metashape 

1.6.6 (Agisoft LLC, Petersburg, Russia). The multispectral orthomosaic error metrics in-

clude X error (0.800178 metres (m)), representing the deviation in the longitudinal dimen-

sion (east-west direction); Y error (0.501047 m), indicating the error in the latitudinal di-

mension (north-south direction); and Z error (1.07776 m), representing the error in the 

altitude dimension. Additionally, the XY error (0.944104 m) signifies the combined error 

in both longitudinal and latitudinal directions, while the total error is reported as 1.4328 

m. These values collectively provide a comprehensive understanding of the spatial accu-

racy of the orthomosaic, reflecting the accuracy of the georeferencing process for the mul-

tispectral imagery. After completing the orthomosaic generation, georeferencing was per-

formed using the image registration tool in ArcGIS Pro 3.1.2 (Esri, Redlands, CA, USA). A 
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2nd order polynomial transformation method was applied, employing eight ground con-

trol points to enhance precision. Indicators of the georeferencing quality were provided 

through root mean square (RMS) errors. The forward transformation yielded a value of 

0.005452, the inverse transformation recorded 0.005476, and the combined forward-in-

verse transformation exhibited 0.000003. The observation of lower RMS errors implies a 

heightened accuracy in aligning the imagery with the Earth’s surface. This critical infor-

mation ensures that the spatial data extracted from the datasets maintains accurate geo-

graphic positioning. Figure 5 showcases a high-resolution RGB image created using the 

Sony high-resolution RGB Camera. Figures 6 and 7 show a region (red colour polygon in 

Figure 5) of high resolution RGB imagery and georeferenced multispectral region of in-

terest, respectively. 

• Step 3: Data labelling 

The RGB and multispectral orthomosaics were utilised for labelling (Figure 8). The 

ground truth data was overlayed on the orthomosaics using QGIS (Version 3.2.0; Open-

Source, Geospatial Foundation, Chicago, IL, USA) which is free and open-source geo-

graphic information software. Using the ground truth data, five classes were assigned for 

the segmented maps. In ASPA 135, labelling was applied to moss with varying health lev-

els (Table 3) as well as three lichen types (Figure 4 legend). The class list for segmented 

vegetation consists of Healthy Moss, Stressed Moss, Moribund Moss, Lichen, and Non-

Vegetation, assigned IDs from 1 to 5 respectively [4]. Polygons were manually drawn 

around the pixels within the ground truth quadrant that were associated to the ground 

truth label by checking the high resolution RGB imagery. After labelling, the labelled vec-

tor data was converted to a raster format, resulting in the generation of a labelled mask, 

through the utilisation of the rasterising tool in QGIS. 

 

Figure 5. High resolution RGB orthomosaic of ASPA 135 developed from Sony Alpha 5100 raw images. 
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Figure 6. A region of high resolution RGB orthomosaic. 

 

Figure 7. A region of high resolution multispectral orthomosaic. 

 

Figure 8. Labelled polygons with different classes over georeferenced multispectral orthomosaic. 
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• Step 4: ROI extraction 

The whole multispectral orthomosaic (13,659 × 6453 pixels) was cropped into a 

smaller region of interest (ROI) with 6004 × 4499 pixels based on the ground truth locations 

to train the XGBoost model, and it was further tiled into 15 smaller different dimensions 

of tiles (Dimension between 400 × 400 pixels and 900 × 700 pixels) to train the U-Net model 

and reduce computational complexity. This approach enabled the U-Net model to con-

centrate on localised data for alignment, enhancing efficiency and accuracy in the process. 

Additionally, labelled masks corresponding to the ROIs were extracted, each sharing the 

same dimensions as the multispectral ROI, to facilitate model training. 

• Step 5: Statistical analysis 

Correlation analysis was performed between moss health and twenty-one spectral indi-

ces as listed in Table 4 and four statistical features including mean, variance, skewness, and 

kurtosis. Following the correlation analysis, the estimation of feature importance was con-

ducted using XGBoost, using spectral indices, all bands from multispectral imagery (blue, 

green, red, red edge, NIR, and thermal), and all the statistical features mentioned above. 

Table 4. Comprehensive overview of the various spectral indices utilised in the current study, offer-

ing a detailed compilation of the specific indices employed to analyse and interpret spectral data. 

Spectral Indices Formula 
Literature 

Review 

Normalised Difference Vegetation Index (NDVI)  
NIR − R

NIR + R
 [43] 

Green Normalised Difference Vegetation Index (GNDVI) 
NIR − G

NIR + G
 [44–46] 

Modified Soil-Adjusted Vegetation Index (MSAVI) 2 × NIR + 1 − √2(2 × NIR + 1) − 8(NIR − R)

2
 [47] 

Enhanced Vegetation Index (EVI) 
2.5(NIR − R)

NIR + 6R − 7.5B + 1
 [48] 

Simple Ratio Index (SRI) 
NIR

R
 [49] 

Atmospherically Resistant Vegetation Index (ARVI) 
NIR − (R − 2(B − R))

NIR + (R − 2(B − R))
 [47] 

Structure Insensitive Pigment Index (SIPI) 
NIR − B

NIR − R
 [50] 

Green Chlorophyll Index (GCI) 
NIR

G
− 1 [51,52] 

Normalised Difference Red Edge Index (NDRE) 
NIR − Red Edge

NIR + Red Edge
 [53–55] 

Leaf Chlorophyll Index (LCI) 
NIR − Red Edge

NIR + R
 [48] 

Difference Vegetation Index (DVI) NIR − R [46,51,56] 

Triangular Vegetation Index (TVI) 60(NIR − G) − 100(R − G)  [48] 

Normalised Green Red Difference (NGRDI) 
G − R

G + R
 [46,57] 

Optimised Soil-Adjusted Vegetation Index (OSAVI) 
1.16(NIR − R)

NIR + R + 0.16
 [58] 

Green Optimised Soil Adjusted Vegetation Index (GOSAVI) 
NIR − G

NIR + G + 0.16
 [58] 

Excess Green (EXG) 
2G − R − B

R + G + B
 [59] 

Excess Red (EXR) 
1.4R − G

R + G + B
 [59] 

Excess Green Red (EXGR) ExG − ExR [59] 

Red Green Index (RGI) 
R

G
 [59] 

Green Red Vegetation Index (GRVI) 
R − G

R + G
 [59] 

Enhanced Normalised Difference Vegetation Index (ENDVI) 
(NIR + G) − 2B

(NIR + G) + 2B
 [50] 

R: Red; G: Green; B: Blue: NIR: Near Infra-Red. 
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3. Machine Learning Models for Vegetation Mapping 

Once the training data was prepared, it was then fed into the ML classifiers. The train-

ing phase of the model was carried out using Python 3.8.10. For data processing and ML 

tasks various libraries were utilised, including Geospatial Data Abstraction Library 

(GDAL) 3.0.2, XGBoost 1.5.0, Scikit-learn 0.24.2, OpenCV 4.6.0.66, and Matplotlib 3.8.2. 

The training for the U-Net model was performed in Google Colab, which is equipped with 

a graphics processing unit (NVIDIA T4 GPU, NVIDIA: Santa Clara CA, USA). Figure 9 

depicts the proposed process pipeline for ML model training for developing segmented 

maps using both XGBoost and U-Net classifiers. 

 

Figure 9. Processing pipeline of machine learning for classification of health status of moss and li-

chen in an Antarctic environment. 

3.1. XGBoost Model Training and Fine Tuning 

XGBoost stands for extreme gradient boosting library [60], and it is designed to be a 

highly efficient, flexible, and portable ML algorithm. It is a state-of-the-art classifier that 

implements parallel tree boosting. It is known for its high execution speed and good per-

formance. XGBoost was chosen for this project as it is a popular ML framework that is 

used widely in industry and academia, especially for detecting different vegetation types 

[61,62]. The XGBoost classifier script was fed the ROI multispectral and mask files de-

scribed in the XGBoost ROI extraction section. The XGBoost model followed the pipeline 

described in Figure 10. 
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Figure 10. Processing pipeline employed for XGBoost segmentation, showcasing the sequential 

steps and pivotal components involved in the methodology. 

First, the ROI was loaded in and then the desired spectral indices were calculated. 

These spectral indices help the classifier to see data without the distortion of shadows or 

other anomalies. These indices become features in the training data set. Hyperparameter 

tuning for the XGBoost model was regarded as a critical aspect of the analysis. The optimal 

configuration, encompassing a maximum depth of 10, a learning rate of 0.02, 250 estima-

tors, a subsample rate of 0.8, and a colsample_bytree of 0.8, was determined. Additionally, 

hyperparameters such as gamma, reg_alpha, and reg_lambda were systematically set to 

0.0, 0.0, and 1.0, respectively. The entire process was carried out to ensure the model’s 

effectiveness and robustness, and the outcomes of this methodological approach are de-

tailed in the subsequent sections. After completion, XGBoost conducts feature importance 

analysis to identify the features that exert the most influence on the model’s predictions. 

Subsequently, the trained model is validated using the test data. 

3.2. U-Net Model Training and Fine-Tuning 

U-Net is a network architecture known for its U-shaped encoder-decoder structure 

[63]. The architecture is simple, efficient, and widely used for semantic segmentation 

tasks. The 15 tiles, specified in the step 4 were uploaded to Google Drive so they could be 

accessed by the Google Colab script. Alongside the tiles, the labelled polygon file was ras-

terised and cropped to be the same size as each ROI. A custom U-Net architecture was 

designed for this project. Figure 11 demonstrates the pipeline of the U-Net model. 

The process involves cropping the collected data into tiles of a predetermined size, 

employing the U-shaped architecture of U-Net. This architecture includes encoder layers, 

a bottleneck layer, and decoder layers, with subsequent resizing of the patches. A loss 

function, specifically Sparse Categorical Cross-Entropy, is then defined to evaluate the 

disparity between predicted masks and labelled data masks. The training process utilised 

the Adam optimiser to minimise the specified loss function, with hyperparameters tai-

lored for model training. Table 5 provides an overview of the essential parameters and 

configurations utilised in the development of the model. It summarises the preprocessing 

procedures, model architectures, and training settings. The preprocessing phase encom-

passes the patch sizes and overlap settings, as well as the application of low-pass and 



Sensors 2024, 24, 1063 12 of 30 
 

 

Gaussian blur filters. The dataset was partitioned into training and testing sets, with spec-

ified random state values to ensure reproducibility. Multiple model architectures were 

employed, each characterised by distinct elements such as the number of convolution lay-

ers, kernel sizes, and dropout rates. Additionally, diverse learning rates, batch sizes, and 

epochs were applied during model training and tuning. The optimal hyperparameters for 

the U-Net model that yielded the best results included a patch size of 128 × 128 with a 30% 

overlap, no filters applied, and a train-test split of 25%. Additionally, the optimal config-

uration involved convolution layers spanning from 64 to 1024, a dropout rate of 0.2, a 

learning rate set to 0.001, and a batch size of 25. To achieve optimal performance, the 

model underwent training for 400 epochs. 

 

Figure 11. Processing pipeline employed for U-Net segmentation, delineating the sequential steps 

and critical components integral to the methodology. 

Table 5. Parameter tuning for U-Net training. 

Preprocessing 

Patch size 32, 64, 128, 256 

Overlap 0.1, 0.2, 0.3 

Low pass filter Without filter, 3 × 3, 5 × 5, 7 × 7 

Gaussian blur filter Without filter, 3 × 3, 5 × 5, 7 × 7 

Train test split 20%, 25%, 30% 

Model Archi-

tecture 

Convolution layers 
8–1024, 16–1024, 32–1024, 64–1024, 128–1024, 16–512, 

32–512, 128–512, 8–256, 16–256, 32–256 

Kernal size 1 × 1, 3 × 3, 5 × 5 

Dropout 0.1, 0.2 

Model compile 

and Training 

Learning rate 0.1, 0.01, 0.001, 0.0001 

Batch size 10, 15, 20, 25, 30, 35 

Epochs 50, 75, 100, 150, 200, 250, 300, 400 
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3.3. Verification 

Once both algorithms had been trained, the model was applied to the test data set. A 

series of evaluation metrics were established to ensure that the model was handling the 

test data well. Evaluation descriptors, including true positive (TP), false positive (FP), true 

negative (TN), and false negative (FN), were used to estimate the precision, recall, F1-

score, and Intersection over Union (IoU). Equation (1) shows the formula for precision, 

which is the ratio between the correctly labelled pixels and the total count of pixels that 

were correctly labelled as well as those that were mislabelled within a specific class. Recall, 

as seen in Equation (2), is the proportion between the correctly labelled pixels and the 

summation of correctly labelled pixels and pixels that should have been labelled for a 

particular class but were not. F1-score, Equation (3), is a metric that measures a model’s 

accuracy. It combines both precision and recall metrics and computes how many times 

the model correctly predicted a pixel in a class. IoU stands for intersection over union and 

is a percentage indicating the amount of overlap between the expected number of labelled 

pixels and the actual area of labelled pixels (Equation (4)). This metric was only applied 

to the U-Net model. Another validation method for the model is called K-fold cross vali-

dation. This is where k number of folds are put into a dataset (split up). For each fold, 

training is conducted on the remaining folds and the data in the specified fold is used as 

validation data. This tests the model’s ability to handle new unseen data. 

Precision = 
TP

TP +  FP
 (1) 

Recall = 
TP

TP + FN
 (2) 

F1-score = 
2TP

FP + 2TP + FN
 (3) 

Intersection over Union (IoU) = 
Area of intersection

Area of Union
 (4) 

3.4. Prediction 

After training the XGBoost model, the outcomes were assessed through the applica-

tion of inference using the trained model. The entire multispectral orthomosaic was 

cropped into tiles, each measuring 700 × 700 pixels. A batch processing script facilitated 

the application of inference to individual tiles, which were subsequently assembled in 

QGIS to generate the final segmented map. For the U-Net model prediction, a different 

tile size of 128 × 128 pixels was employed. Similarly, to the XGBoost prediction, inference 

was applied using a batch processing script. The resulting predicted tiles were then 

stitched together using QGIS, producing the final segmented map for the U-Net model. 

4. Results 

4.1. Correlation Analysis and Feature Ranking 

Figure 12 illustrates the resultant correlation matrix between moss health and spec-

tral indices. In the results, as depicted in the correlation matrix, no significant correlations, 

either positive or negative, were observed, with coefficients falling below 0.5, indicating a 

lack of strong associations between moss health and the analysed spectral features. 

An additional approach to assess the significance of input features using XGBoost 

models involves feature ranking, providing the importance of distinct features in influ-

encing the model’s predictions. Figure 13 shows the relative importance of each feature in 

the predictions for XGBoost. The red band (668), MSAVI, and kurtosis emerged as the top 

three influential features in the model training process. The second highest spectral index 

was GNDVI, while SIPI and EVI exhibited comparatively lower importance. It was found 

that a series of eight spectral indices produced a better model. These eight indices included 

GNDVI, MSAVI, LCI, GRVI, RGI, NDRE, EVI, and SIPI. 
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Figure 12. Correlation matrix heatmap depicting the interrelationships among various vegetation 

indices used in the XGBoost model training for segmenting the healthy condition of moss and li-

chen. The colour intensity in the heatmap indicates the strength and direction of the correlations 

between different indices and statistical measures. 



Sensors 2024, 24, 1063 15 of 30 
 

 

 

Figure 13. Bar diagram of feature ranking, displaying the importance of different features in the 

XGBoost model’s prediction. 

4.2. Performance of XGBoost 

The test data was used to verify the model’s capabilities after model training. The 

classification report (Table 6) demonstrates the model’s ability to predict each class on the 

test data and Figure 14 demonstrates the normalised confusion matrix for all classes. The 

precision, recall, and F1-score of the whole model overall were significantly high (91%, 

88%, 89% respectively), as this is combining all five classes. When investigating the indi-

vidual classes, healthy moss had the lowest recall and F1-score. This is because this class 

had the lowest amount of labelling as seen in the support column. Due to the low number 

of samples, not just for healthy moss but overall, the model could not perform better than 

these results without serious overfitting. Though most of the healthy moss pixels are cat-

egorised as the correct class, there are a lot of healthy moss pixels labelled as stressed or 

moribund moss. This is why the recall value was so low and demonstrates that the sepa-

rability between these classes is very narrow. With the trained model, K-fold cross valida-

tion was done using 10 folds, using the scikit-learn Python library. This technique evalu-

ates the accuracy of 10 sample combinations to observe whether the average accuracy of 

labelled data was similar to the unseen data. The cross-validation results indicate that the 

average accuracy was 98.5% and the standard deviation was 0.07%. 

Table 6. Classification Report summarising key metrics for an XGBoost model, including precision, 

recall, and F1-score, across five classes. 

Classes Precision Recall F1-score 

Healthy Moss 0.86 0.71 0.78 

Stressed Moss 0.86 0.83 0.85 

Moribund Moss 0.88 0.92 0.90 

Lichen 0.94 0.91 0.93 

Non-Vegetation 1.00 1.00 1.00 



Sensors 2024, 24, 1063 16 of 30 
 

 

 

Figure 14. Normalised confusion Matrix Heatmap representing the classification performance of 

XGBoost across five classes. 

4.3. Performance of U-Net 

We explored two methods for U-Net model development. The first method involves 

utilising the same labelled data employed in the development of the XGBoost model, 

while the second method incorporates XGBoost predictions as inputs for the U-Net model, 

leveraging labelled data for enhanced performance. In Table 7, a comprehensive Classifi-

cation Report outlines key metrics such as precision, recall, and F1-score for a U-Net 

model, while Figure 15 visually presents the normalised confusion matrix heatmap, 

providing a detailed insight into the classification performance across the five classes us-

ing method 1. 

 

Figure 15. Normalised confusion Matrix Heatmap representing the classification performance of U-

Net across five classes using method 1. 
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Table 7. Classification Report summarising key metrics for a U-Net model, including precision, re-

call, and F1-score, across five classes using method 1. 

Classes Precision Recall F1-score IoU 

Healthy Moss 0.74 0.70 0.72 0.56 

Stressed Moss 0.69 0.82 0.75 0.60 

Moribund Moss 0.77 0.76 0.77 0.63 

Lichen 0.86 0.84 0.85 0.74 

Non-Vegetation 1.00 1.00 1.00 0.99 

The second method for U-Net model development yields significant improvements 

in various performance metrics compared to the first method. Notably, Method 2 demon-

strates a marked increase in precision for Healthy Moss by 0.20 (from 0.74 to 0.94), Stressed 

Moss by 0.17 (from 0.69 to 0.86), and Moribund Moss by 0.10 (from 0.77 to 0.87). In terms 

of recall, Method 2 shows a slight improvement for Healthy Moss (up 0.01 from 0.70 to 

0.71) and substantially better precision for Moribund Moss (up 0.18 from 0.76 to 0.94). The 

F1-score sees noteworthy enhancements in Healthy Moss by 0.09 (from 0.72 to 0.81), 

Stressed Moss by 0.11 (from 0.75 to 0.86), and Moribund Moss by 0.13 (from 0.77 to 0.90). 

Additionally, Intersection over Union (IoU) values exhibit consistent improvements 

across all classes, with gains in Healthy Moss by 0.11 (from 0.56 to 0.67), Stressed Moss by 

0.15 (from 0.60 to 0.75), and Moribund Moss by 0.19 (from 0.63 to 0.82). These quantitative 

improvements underscore the effectiveness of the second method, leveraging XGBoost 

predictions for U-Net input, in enhancing the overall performance and accuracy of the 

model compared to the first method. 

Table 8 outlines the classification report, offering a detailed assessment of the U-Net 

model’s performance metrics, including precision, recall, and F1-score, across five distinct 

classes. Notably, the two-stage ensemble approach, incorporating predictions from the ini-

tial XGBoost model as inputs for the subsequent U-Net model, yielded a discernible en-

hancement in overall performance. Figure 16 further elucidates these advancements by pre-

senting a normalised confusion matrix heatmap, visually encapsulating the improved clas-

sification performance of the U-Net across the diverse classes. The heatmap serves as a com-

pelling representation of the model’s ability to leverage the complementary strengths of 

XGBoost, resulting in a refined and more accurate predictive framework. This observed per-

formance boost substantiates the efficacy of the proposed two-stage ensemble methodology 

in achieving superior outcomes compared to standalone models, underscoring the synergy 

between XGBoost and U-Net in the context of the specific research objectives. 

Table 8. Classification Report summarising key metrics for a U-Net model, including precision, re-

call, and F1-score, across five classes using method 2. 

Classes Precision Recall F1-score IoU 

Healthy Moss 0.94 0.71 0.81 0.67 

Stressed Moss 0.86 0.86 0.86 0.75 

Moribund Moss 0.87 0.94 0.90 0.82 

Lichen 0.95 0.85 0.90 0.82 

Non-Vegetation 0.94 0.97 0.96 0.92 

The training and validation trends over the first 400 epochs show a positive trajectory 

in terms of accuracy and a decreasing trend in loss. The model starts with an accuracy of 

around 64.5% and steadily improves, reaching approximately 96.4% at epoch 400. Con-

currently, the training loss decreases from over 6000 to around 0.09, indicating that the 

model is learning and generalising well. The validation accuracy and loss also exhibit a 

positive trend, although with some fluctuations. The validation accuracy starts from a 

very low value (0.008) and increases to approximately 92.8%, while the validation loss 
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decreases from 6192 to around 0.23 (Figure 17). This suggests that the model is performing 

well on both training and validation datasets, demonstrating good learning and generali-

sation capabilities. Regular fluctuations in validation metrics might indicate a degree of 

overfitting, and further analysis, such as model fine tuning or the use of regularisation 

techniques, could be explored to enhance generalisation. 

 

Figure 16. Normalised confusion Matrix Heatmap representing the classification performance of a 

U-Net across five classes using method 2. 

  

(a) (b) 

Figure 17. U-Net model training plot from method 2: (a) accuracy; (b) loss. This visual representa-

tion spans epochs 0 to 400, providing an insight into the evolution of the model’s performance over 

a training period. 

Figure 18 provides an overview of the K-fold cross-validation results for the U-Net 

model. Figure 18a displays the accuracy of the model across different folds, demonstrating 

its consistency and performance, while Figure 18b visualises the loss, indicating the model’s 

error rate during cross validation. Additionally, the model’s overall performance across all 

folds is summarised, with an overall accuracy of approximately 93.23% with a standard de-

viation of 0.19 and a loss of approximately 0.21 with a standard deviation of 0.04. 
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(a) (b) 

Figure 18. K-fold cross validation for U-Net model using method 2: (a) accuracy, (b) loss. 

4.4. Segmented Maps 

In Figure 19, the XGBoost Segmentation results unfold, showcasing the model’s clas-

sification outcomes with precision across five distinct classes in the complex segmentation 

task. Meanwhile, Figure 20 delves into the U-Net Segmentation results using method 2, 

offering a detailed perspective on the model’s classification outcomes across the same five 

distinct classes in the segmentation task. 

Figure 21 showcases key visual outputs, including (a) a high-resolution RGB image, 

(b) U-Net segmentation, and (c) XGBoost segmentation. 

Table 9 illustrates the percentage distribution of vegetation classes within the speci-

fied region of 931.12 m2 as shown in Figure 19, comparing the performance of the XGBoost 

and U-Net models. Healthy moss, stressed moss, moribund moss, and lichen are the iden-

tified classes, highlighting the varying proportions of each class as predicted by the re-

spective models. 

Table 9. Class distribution in the target area (931.12 m2) using XGBoost and U-Net Models. 

Class XGBoost U-Net 

Healthy Moss 6% 3% 

Stressed Moss 15% 12% 

Moribund Moss 20% 30% 

Lichen 21% 21% 

Figures 22–25 present a visual comparison between XGBoost predictions and U-Net 

predictions within a defined ROI. The visualisation allows for a detailed examination of 

the intersection and union between the two models. The overlay of XGBoost predictions 

over U-Net predictions provides valuable insights into the complementary strengths and 

weaknesses of the two approaches, contributing to a comprehensive understanding of 

their performance in the specific targeted region. 
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Figure 19. XGBoost Segmentation results for a multi-class scenario, highlighting the model’s classi-

fication outcomes across five distinct classes in the segmentation task. 
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Figure 20. U-Net Segmentation results (method 2) for a multi-class scenario, highlighting the 

model’s classification outcomes across five distinct classes in the segmentation task. 
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(a) 

 
(b) 

 

(c) 

Figure 21. (a) High resolution RGB image; (b) U-Net segmentation; (c) XGBoost segmentation. 
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Figure 22. Comparison of XGBoost and U-Net predictions of healthy moss in a region of interest. 

 

Figure 23. Comparison of XGBoost and U-Net predictions of stressed moss in a region of interest. 
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Figure 24. Comparison of XGBoost and U-Net predictions of moribund moss in a region of interest. 

 

Figure 25. Comparison of XGBoost and U-Net predictions of lichen in a region of interest. 

5. Discussion 

The purpose of this paper was to verify a methodology of using multispectral im-

agery, UAVs, and ML to classify moss health (healthy, stressed, and moribund) and lichen 

in Antarctica. The methodology and segmented maps of ASPA 135 will help scientists to 

perform non-invasive field tests to monitor the health of moss beds. The physical risk to 

the moss during ground testing plus the labour demand is extremely high; therefore, the 
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utilisation of UAVs to conduct continuous monitoring will promote sustainability and re-

duce future costs. The XGBoost model performed well with the limited range of samples. 

With an F1-score of 89%, the model was able to accurately segment moss health and lichen 

out of the orthomosaic. Eischeid et al. had an F1-score of 85% for the Random Forest (RF) 

algorithms used for disturbance mapping on tundra vegetation in the Artic [64]. Likewise, 

Sotille et al. used an RF classifier on Antarctic vegetation and got an accuracy of 96.6% 

[65]. This supports the findings of Sotille et al. and Turner et al. as more ground truth data 

would have allowed the RF model to be more transferable to new data [66]. In addition, 

more ground truth data for the XGBoost model would have helped the labelling process 

as the manual polygons would have been less subjective. 

In comparison to prior studies employing semi-automatic object-based image analy-

sis (OBIA) for moss health classification in the same moss beds over the 2003–2013 

timeframe, our research introduces a pioneering approach [4]. While the conventional 

OBIA method achieved 84% accuracy within fixed quadrat locations (25 cm × 25 cm), our 

methodology utilises drone-based multispectral imaging and DL, enabling a larger spatial 

coverage and automated classification. The key distinction lies in our ability to cover ex-

pansive areas, providing a more comprehensive understanding of moss health dynamics. 

Additionally, the integration of multispectral imagery enhances spectral resolution, con-

tributing to a refined and detailed classification of moss health. This novel approach rep-

resents a significant advancement in the field, offering a more efficient and accurate means 

of assessing moss health and mapping over larger territories. 

In this study, a two-stage ensemble methodology was employed for predictive mod-

elling, leveraging the strengths of XGBoost and a U-Net architecture. In the initial stage, 

XGBoost, a robust gradient-boosting algorithm, was utilised for making predictions on 

the target variable. The outputs generated by XGBoost were subsequently employed as 

input features for a U-Net model in the second stage. The U-Net, renowned for its effec-

tiveness in image segmentation tasks, harnessed the information encoded by XGBoost to 

refine and enhance the predictive capabilities. This two-step modelling approach, involv-

ing the sequential utilisation of XGBoost and U-Net, aimed to capitalise on the comple-

mentary strengths of the two algorithms, potentially yielding improved predictive perfor-

mance compared to standalone models. The methodology encapsulates a novel strategy 

for ensemble modelling, strategically incorporating the distinctive attributes of each 

model to achieve a more robust and accurate predictive framework. 

In the context of our research, the integration of the U-Net model with XGBoost pre-

dictions is a novel approach designed to enhance segmentation accuracy. We 

acknowledge the potential concern regarding the accuracy of initial XGBoost predictions 

and its influence on subsequent U-Net segmentation. To address this, our methodology 

incorporates data preprocessing (selection of tiles), parameter tuning (dropout, learning 

rate, and different convolution layer), and model training strategies (batch size and 

epochs) to minimise the impact of incorrect predictions. We emphasise the importance of 

transparently discussing these challenges and limitations. Additionally, our experimental 

validation includes a thorough assessment of model performance under various condi-

tions (k-fold cross validation), demonstrating the robustness and generalisability of our 

integrated methodology. This proactive approach to addressing potential errors ensures 

a comprehensive understanding of the model’s capabilities and limitations in real world 

applications. 

The finer details of the moss could not be identified because of the resolution of the 

Altum multispectral camera. The fidelity displayed in the Mini 3 Pro could not be repli-

cated in the XGBoost model because of the lower resolution. Higher resolution data would 

allow for a more intricate segmented map, which would be more accurate as the moss 

classes are not constrained to particular patches but are intertwined across the ASPA 135 

landscape. Also, higher resolution would have helped the labelling process. Turner et al. 

concluded that imagery of 3cm/pixel was suitable enough for vegetation detection classi-

fication [66]. This paper found that having a higher resolution was necessary, especially 
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when labelling non-ground truth data points. The Mini 3 Pro dataset is a very small or-

thomosaic; having access to the same high resolution all over ASPA 135 would have al-

lowed labelling across a much larger area, meaning better results. This would also have 

helped the U-Net architecture. Sotille et al. came to the same conclusion when using 

GEOBIA to classify maritime Antarctic vegetation. However, labelling such an extensive 

data set involves a lot of manual work [64]. 

Our study focuses on evaluating the health of moss and lichen using multispectral 

imagery captured by UAVs, employing ML classifiers such as XGBoost for segmentation. 

In contrast, another study by Sandino et al. primarily addresses the challenge of mapping 

the same study location using a workflow that integrates UAV, hyperspectral imagery, 

and same ML classifiers of XGBoost [39]. This approach resulted in an average accuracy 

of 95%, demonstrating the successful detection and mapping of moss and lichens. While 

both studies leverage ML, the first emphasises health assessment, and the second focuses 

on precise mapping, yet both contribute valuable insights into the potential applications 

of remote sensing technologies in monitoring the impact of climate change on the Antarc-

tic ecosystem. Despite our adoption of the U-Net model in this study, the achieved results 

were comparatively lower than those obtained in the hyperspectral study that utilised 

XGBoost [39]. One prominent factor contributing to this performance gap is the insuffi-

cient number of training samples available for U-Net. In ML, particularly for DL models 

like U-Net, the quantity and diversity of training data play a crucial role in model perfor-

mance. The U-Net model requires a substantial volume of diverse training samples to ef-

fectively learn and generalise patterns within the data. In our case, the limited availability 

of training samples likely hindered the U-Net model’s ability to discern complex spectral 

patterns and variations associated with the health assessment of moss and lichen. Short-

age of diverse training examples can result in suboptimal model performance, as the 

model struggles to capture the full range of features necessary for accurate segmentation. 

This shortage of diverse training examples can result in suboptimal model performance, 

as the model may struggle to capture the full range of features necessary for accurate seg-

mentation. On the other hand, the XGBoost model employed in the hyperspectral study 

benefited from a more extensive dataset, allowing it to better learn the intricate relation-

ships between spectral characteristics and vegetation classes. The abundance of training 

samples facilitated the XGBoost model’s ability to generalise and make accurate predic-

tions, ultimately contributing to the higher overall performance observed in the hyper-

spectral study. 

The utilisation of UAVs in monitoring moss and lichen communities in East Antarc-

tica presents numerous advantages, underscoring its potential as a valuable tool for eco-

logical research in challenging environments. The high spatial resolution and multispec-

tral capabilities of UAVs allow for detailed and accurate vegetation assessments, offering 

insights into the health and dynamics of moss and lichen communities. The non-invasive 

nature of UAV-based data collection minimises disturbance to the delicate Antarctic eco-

systems, providing an environmentally sensitive approach to monitoring. However, it is 

imperative to address certain limitations inherent in UAV-based studies. One notable con-

straint is the limited endurance of UAV flights, restricting the coverage area per mission. 

This limitation may necessitate multiple flights to adequately survey larger expanses, po-

tentially leading to increased logistical complexities and resource requirements. Moreo-

ver, the payload capacity of UAVs may impose restrictions on the types of sensors and 

equipment that can be deployed, influencing the comprehensiveness of data collection. 

Another critical consideration is the susceptibility of UAV operations to adverse 

weather conditions prevalent in Antarctica. Unpredictable weather patterns, including 

strong winds, extreme cold, and snow coverage, can impede flight schedules and data 

collection efforts. Ensuring reliable and consistent data acquisition becomes particularly 

challenging in such extreme environmental conditions. Despite these challenges, the 

study underscores the transformative potential of UAV technology in advancing non-in-

vasive monitoring techniques for polar ecosystems. The combination of high-resolution 
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imagery and ML classifiers facilitates an understanding of vegetation health, contributing 

to biodiversity conservation efforts in remote and inaccessible regions. Future advances 

in UAV technology, including increased flight endurance and enhanced weather resili-

ence, hold promise for overcoming current limitations and further expanding the applica-

bility of UAVs in polar ecological research. 

6. Conclusions and Recommendations 

This paper presented a novel workflow that combined UAVs, multispectral and RGB 

imagery, and ML to monitor the health of Antarctic vegetation, validated with a case study 

for detection and mapping of moss and lichen from a dataset collected at ASPA 135 in 

early 2023. This study addressed a research gap found in previous works by comparing 

two state-of-the-art ML classifiers: XGBoost and U-Net. The XGBoost model demon-

strated robust classification across various vegetation classes, showcasing high precision, 

recall, and F1-score. The U-Net model, while adopting different segmentation methods, 

presented different outcomes. Method 1 showed moderate performance, indicating po-

tential limitation of lack of training pixels to classify the health status of moss. In contrast, 

Method 2 illustrates improvements; the U-Net model’s performance is influenced by the 

availability of training samples, underscoring the importance of the segmentation ap-

proach. The choice between XGBoost and U-Net should consider the quantity of training 

samples because DL models like U-Net require more training samples than XGBoost. 

However, the collection of more ground truth information to increase the training samples 

from the Antarctic is a challenging task. Therefore, one of the techniques to overcome this 

challenge is to use classical ML like XGBoost for initial predictions which can then be used 

as inputs to DL models. This presents a viable strategy to address this challenge. 

Further exploration and refinement of ML techniques tailored to polar environments 

will advance our understanding and monitoring capabilities in these critical ecosystems. 

Future areas of work include capturing more high-resolution RGB data for increased la-

belling to enhance the CNN classifier performance and to visually verify polygon label-

ling. Additionally, higher resolution multispectral data should be captured to create more 

accurate segmented maps that mimic the dispersed characteristics of vegetation classes in 

nature. Detailed analysis on which spectral indices impact what class should be investi-

gated. Furthermore, evaluation on other ML algorithms could improve the segmentation 

of Antarctic vegetation. The use of UAVs in Antarctica is still relatively new; however, it 

has effectively become the most non-invasive method to monitor the health of these fragile 

ecosystems. 
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