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Highlights
Partner flexibility is increasingly recog-
nized as integral to successful mutualistic
symbioses.

Fungi are some of the most diverse,
impactful, and widespread mutualistic
symbionts.

Growing evidence from lichen genomics,
biochemistry, evolution, and ecology are
challenging long-held perspectives on
these key groups of mutualists.
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Several decades of research across disciplines have overturned historical
perspectives of symbioses dominated by binary characterizations of highly
specific species–species interactions. This paradigm shift has unlocked the
previously underappreciated and overlooked dynamism of fungal mutual-
isms such as mycorrhizae. Lichens are another example of important fungal
mutualisms where reconceptualization is urgently needed to realize their
potential as model systems. This reconceptualization requires both an ob-
jective synthesis of new data and envisioning a revised integrative approach
that unifies the spectrum of ecology and evolution. We propose a ten-theme
framework that if pursued would propel lichens to the vanguard of symbiotic
theory.
Wedrawon this new research to present
a framework for reconceptualizing li-
chens and propose lichen symbioses
as ideal model systems.
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Success of lichen symbioses
Fungi that form mutualistic symbioses (see Glossary) are successful organisms, with high
species richness, essential ecosystem functions, global geographic distribution, and
abundance, even dominance, in many habitats, even extreme ones [1–6]. Mycorrhizae and
lichens are two examples of broadly successful, keystone fungal symbioses with global impor-
tance [7,8]. Their success is attributed to benefits inherent in their lifestyles [9,10]. By and large
mutualistic fungal symbioses are characterized by symbiont flexibility, in striking contrast to
the specificity seen in many comparable plant and animal systems (e.g., corals or orchids and
their pollinators [1,11–13]. Symbiont flexibility has long been recognized in mycorrhizal fungi, in
part due to tractability of the symbiotic system to experimental study in diverse settings
[6,8,14]. Until recently, symbiont flexibility was believed largely to be the exception in lichens,
in part due to the intractability of the symbiotic system to experimentation in highly controlled
laboratory conditions [15–17]. In fact, a growing body of evidence challenges this assumption
as rapid advances in molecular data generation and analysis have led to increasing recognition
that lichen symbioses are far more complex, diverse, and flexible than has long been assumed
[18–23].

Narrow focus on studying the classical conception of the symbiosis (i.e., binary pairs of sym-
bionts exclusively driven by the fungal species) has overshadowed overwhelming evidence
that symbiont diversity and flexibility, rather than the symbiosis itself, is the causal mechanism
for lichen success. New data and analytical tools have repeatedly forced reconceptualization
of lichens for centuries [24,25], and recent reconceptualization has focused on the existence
and nature of the symbiosis [26,27]. Current advances in understanding the implications and
outcomes stemming from symbiont diversity and flexibility demand a novel perspective on
the patterns and processes within lichens, the communities they form, and the ecosystems
within which they function. Here, we present a transformational framework for lichen biology,
ecology, and evolution through which the potential of these dynamic organisms can be
unlocked and placed at the vanguard of science. This framework is organized around ten
facets that illuminate the full spectrum of intrinsic characteristics and reciprocal interactions
that exist within lichen symbioses.
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Glossary
Biosynthetic pathway: a series of
chemical reactions in living organisms
that are catalyzed by enzymes.
Biotic interactions: interactions
between two or more living organisms.
Commensalism: a symbiotic
relationship in which one partner
benefits while the other is neither
harmed nor benefited.
Convergent evolution: a character
that arises independently in evolutionary
unrelated organisms.
Ecological amplitude: the total
breadth of multidimensional ecological
conditions in which a species can
survive.
Lichens: extraordinarily complex
communities of microbial symbionts
from a minimum of three evolutionarily
distantly related phyla representing at
least two kingdoms and that repeatedly
form a phenotypically consistent,
recognizable, mutually beneficial
symbiosis. Taxonomically classified by
the primary fungus and defined by a
quintessential mutualistic relationship
between that fungus and one or more
photosynthesizing partners.
Mutualism: a symbiotic relationship in
which all partners benefit.
Mycorrhizae: soil-dwelling fungi that
form mutualistic symbiotic relationships
with plants wherein hyphae connect
directly to the roots.
Poikilohydry: when an organism
remains at equilibrium with the moisture
content of the surrounding environment.
Primary metabolite: substances that
are generated through the processes
that maintain the basic functions in cells
and organisms.
Secondary metabolite: substances
produced by organisms that are not
required for primary metabolism, vary
between species, and with
concentrations that can vary across
tissues or growth stages.
Symbiont flexibility: the ability of one
symbiont to associate with a diversity of
other symbiont species or genotypes.
Symbiont specificity: the degree of
taxonomic breadth and genetic diversity
among partners in a symbiosis
(e.g., one-to-one versus one-to-many).
Symbiosis: intimate, sustained
biotic interactions with variable
degrees of benefits for the partners
involved.
Trophic (strategy): the means by
which an organism acquires essential
nutrients.
Lichen origins
Lichens have evolved more than ten times independently across the fungal tree of life [28]. Their
forms are an exquisite example of convergent evolution, fulfilling congruent functions in unrelated
evolutionary lineages. Yet, we lack a comprehensive understanding of their evolutionary andmech-
anistic origins from the perspectives of all the symbionts, including the primary fungus and its co-
hort of photosynthesizing partners [29,30]. How and why do lichens evolve? Do the fungi
consistently transition from saprotrophs as appears to be the case in the Dothideomycetes [31]?
Does the holobiont arise consistently through abrupt lichenization events or as stepping stones
from partial to full lichenization? For the fungi, investigation of gene content and genome architec-
ture supports the stepping-stone model [32,33], but analyses with multiple independent contrasts
placed in a strong statistical framework are needed. Finally, do specific climatic conditions drive in-
teractions between lichen symbionts and facilitate trophic transitions to lichenization [34]?

Speciation rates and mechanisms
There are more than 20 000 described species of lichen fungi belonging to over 100 fungal families
[28]. These range from highly diverse lineages undergoing rapid radiations, to less diverse, ancient
lineages that may be living fossils [35–40]. Species richness and evolutionary diversity of the
photosynthesizing partners remains incompletely known, but recent advances suggest remarkable
and previously underappreciated diversity across evolutionary scales [12,41]. Despite a wealth of
phylogenetic study and robust higher-level evolutionary framework, the timing and processes
that underlie diversity at and below the species level have been infrequently investigated [39–42].
Slow rates of speciation have been inferred or assumed across lineages of lichen fungi based on
long-held assumptions of broad geographic distributions, slow growth rates, and unlimited dis-
persal ability [43]. These assumptions are contradicted by recent studies (see following section)
and based on limited availability of fine-grain phenotypic, demographic, and genetic data across
broad evolutionary and spatial scales. Integration of lichens into the general theoretical framework
of speciation processes, validated by empirical genome-wide data, is urgently needed.

The individual
Much like vascular plants, spatially discrete lichens have been assumed to be homogeneous
throughout: consisting of a single haploid fungal genotype and a single genotype of a
photosynthesizing partner [44–46]. This reflects a legacy of botanical study in which lichens
were initially considered to be plants rather than fungi, the latter of which are widely recognized
to form genetically heterogeneous colonies in nature [47]. Even direct comparative anatomical
evidence to the contrary failed to shift this lichen–plant paradigm for nearly a century until DNA
sequencing firmly integrated lichens to the fungal phylogeny [25]. Recent studies have
demonstrated what appears to be a single, discrete, lichen individual composed of multiple
distinct fungal genotypes [45,48] growing seamlessly together. The assumption that the absence
of sexual reproductive structures implies complete fungal cellular haploidy has also been
challenged [49] as has the absence of hybridization as an evolutionary process [50]. There is
also substantial evidence that each lichen hosts a diverse community of photosynthesizing
partners in varying levels of abundance [51–53] and degrees of symbiont specificity [21,54].
The aforementioned suggests that there is an urgent need to reconceptualize general theory
about lichens, which has been based on incorrect assumptions about the homogeneous
composition of the individual (Figure 1). This has direct implications for population genetics and
speciation, especially in organisms that can have enormous population sizes (Figure 2).

Microbial microcosm
Until recently the internal portions of a lichen were thought to consist mostly of tissue from a single
fungus and one, or rarely two, photosynthesizing partners [16,44]. There is now extensive
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Figure 1. Lichen thallus deconstructed. Each individual lichen is comprised of a multitude of organisms that together
constitute a miniature ecosystem. One primary mutualistic fungal symbiont contributes the majority of the biomass and
structure to the thallus, and one or more photosynthesizing symbionts constitute the most important photosynthetic partners.
Other species of fungi and microalgae, along with bacteria and micro-invertebrates, grow as commensalists in and among the
scaffold of the dominant symbionts. Some species of fungi grow as pathogens and parasites. Secondary chemistry produced
by the main fungal symbiont drives the functional interactions among organisms in the thallus and with the environment.
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evidence that lichens host diverse and abundant bacterial communities throughout their bodies,
and that these communities can be collectively dispersed as part of routine reproduction [55].
Lichens have also been shown to host diverse communities of non-lichen fungi whose functional
roles vary across the entire symbiotic spectrum from commensalism and mutualism to
parasites and pathogens [18,19,56–58]. Microbial communities are also known to be spatially
structured and environmentally determined, with different lichen species sharing microbes and
the same species having a varied microbiome across the range of habitats and locations where
it occurs [59,60]. These advances follow the trend across biology of increased recognition of
the essential role of microbial communities in the evolution, function, and health of macroscopic
organisms [61,62]. Functional characterization of the lichen microbiome is needed to link a
decade of robust descriptive work with the patterns and processes that have contributed to
the remarkable success of lichens, as well as their characteristic sensitivity to disturbance.
584 Trends in Ecology & Evolution, July 2022, Vol. 37, No. 7
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Figure 2. Recent research has shown lichen individuals, populations, and communities can be more diverse
and dynamic than previously believed. Based on molecular sequence data and advanced microscopy techniques, it
is increasingly clear that what is perceived as a visually discrete individual lichen (middle) is often home to multiple
genotypes of the primary mutualistic fungal symbiont, multiple genotypes and/or species of mutualistic photosynthesizing
symbionts, and a microbiome containing species with a range of symbiotic lifestyles. New methods and theory are
required to account for ecological and evolutionary patterns and processes related to the complexities that result when
this previously unrecognized diversity is extrapolated outwards within populations of a single species (top) and
communities of multiple species (bottom).
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Metabolite economy
Diverse scientific fields recognize lichens as quintessential mutualistic symbioses wherein the role
and function of each symbiotic partner is clearly delimited. The photosynthesizing partner pro-
vides sugars to the heterotrophic fungus and in return the fungal partner provides an environment
where the other partner is shielded from harsh extremes [63,64]. The symbiosis expands the
ecological amplitude of the partners involved [34,43]. Polysaccharides and disaccharides are
key symbiont signaling molecules [27,43,65], in addition to providing food and structures [4].
There is ample evidence that lichens host miniature ecosystems that include many organisms
(e.g., microinvertebrates, parasitic fungi including yeasts, endolichenic fungi, bacteria, and
archaea [66]). Without a holistic, integrated perspective of nutrient cycling and metabolic
processes that incorporates the full range of biotic interactions within the entire intra-lichen
community, it is not possible to completely characterize the functional roles of these diverse
organisms. Shifting the conceptualization of lichens from a binary fungal-photosynthesizing
partner interaction to a trophic network model could transform ecosystem ecology through
development of tractable, small-scale, natural model systems.

Secondary metabolite biosynthesis
In addition to primary metabolites, many hundreds of unique secondary compounds are
produced by lichen fungi and their associated microbiomes [26,67]. These compounds have
been implicated in numerous functions essential to the lichen, mediating interactions with abiotic
and biotic stressors both internally and externally. Although important to lichens, the evolutionary
and ecological processes leading to the production of these compounds are similar to those in
other fungi and plants [68]. Hence, from a systems perspective, lichen biosynthetic pathways
are neither enigmatic nor functionally novel. Lichen secondary metabolites have been
intensively characterized primarily for use in taxonomy and systematics [69,70]. However, the
genetic underpinnings of these compounds and their biosynthesis remains both poorly
characterized and little integrated with biosynthesis in other secondary metabolite-rich
organisms. Detailed characterization of lichen biosynthesis, including heterologous expression
of biosynthetic gene clusters in filamentous fungal systems, will prove indispensable in the search
for novel compounds with application in medicine, industry, and the environment.

Reproductive biology
Lichens are characterized by a unique and complex reproductive biology that contrasts strongly
with that of other organisms, especially vertebrates and plants [54,71]. The absence of sexual se-
lection coupled with functionally indefinite life spans due to poikilohydry, vegetative reproduction,
and rampant clonality results in organisms that completely defy classification using existing life his-
tory frameworks [72]. Lichen reproductive biology is not morphologically driven and gamete syn-
thesis is not phenologically timed; however, existing understanding is shaped by theory from
organisms that have highly structured and discrete life histories. Accounting for the unique aspects
of reproduction across each lichen symbiont, as well as collectively for the holobiont, has profound
implications for the calculation of key metrics such as generation length, population size, fecundity,
migration, and gene flow. Transcending these constraints will vastly expand the horizon of
evolutionary theory and computational biology by requiring a new conceptual framework and
novel analytical tools. A lichen-derived framework and associated tools will provide a unique
opportunity to elucidate an understanding of reproductive biology that is inclusive of all organisms.

Facilitation and community establishment
Lichens are widely applied as bioindicators due to their nuanced responses to environmental
change, disturbance, and pollutants [73,74]. Anthropogenic impacts reduce lichen species rich-
ness and community complexity [75,76]. Recovery from these impacts occurs over protracted
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Outstanding questions
What intrinsic and extrinsic factors lead
to gains and losses of lichenization?

What molecular mechanisms underpin
trophic shifts to and from lichenization?

What is the rate of accumulated
genetic divergence between species
and populations?

Among species and individuals, how
frequently do lichens comprised of
multiple genetically distinct symbiont
partners form and how are compatible
genotypes recognized?

How frequently does hybridization and
polyploidy occur in lichenized fungi?

What is the interaction network of the
microbial microcosm?

Which lichen secondary metabolites
provide solutions to urgent challenges
in human health, the environment,
and industry?

What are the life history traits and
population genetic structure of species
of lichen symbionts, and how can
these be characterized?

How do dispersal, establishment, and
biotic interactions underpin species
assemblages and distributions?

How does community reassembly differ
between natural and anthropogenic
disturbances?

How can generalized patterns and
processes observed in lichens integrate
with symbiotic theory broadly?
timescales beyond observational frameworks of the modern scientific era [77–79]. To date, com-
plete recovery to preimpact conditions has yet to be documented [80]. Instead recovery results in
novel communities missing sensitive species and skewed towards stress tolerant taxa [81,82].
Microbiome data have shown lichen symbiont pools to be highly structured at small scales and
shared among locally occurring species [60,83]. Dispersal and migration limitations usually restrict
successful establishment to small, local scales while establishment at long distances is rare or
absent [37]. The challenges imposed by long-distance single-symbiont dispersal and migration
are overcome by symbiont flexibility, by which the fungus may associate with an evolutionarily
constrained variety of photosynthetic partners (e.g., a specific species, genus, or family) [84].
Symbiont flexibility is the general rule in lichens, and the few lineages that exhibit strict symbiont
specificity are comparatively less resilient to disturbance, fragmentation, and other forms of change
[83,85]. These phenomena suggest that healthy and diverse lichen communities require extensive
ecological and symbiotic facilitation coupled with temporal habitat continuity. Full characterization
of these processes, uniting perspectives from physiology, population genetics, microclimate
ecology, and microbial interactions could unlock the fundamental basis of community assembly
and specialization. Concurrently it could allow for the development of broadly applicable effective
data driven conservation methods for sensitive symbiotic organisms.

Everything is not everywhere
Fungal biology has been dominated by a narrative that organisms are not dispersal limited and
their distributions are entirely shaped by ecological requirements [86,87]. Despite decades of
evidence to the contrary [88–90], this implicit bias is present in lichenology, pervasive in interdis-
ciplinary environments, and has limited perspectives on lichen diversity across evolutionary and
spatial scales. Molecular studies spanning an evolutionary gradient from populations to species
have accelerated a paradigm shift away from ‘everything is everywhere’ [37,82,91,92], but the
legacy continues to influence hypothesis development and data interpretation. A shift from this
historical perspective to greater objectivity has the potential to uncover previously overlooked
diversity and organizational complexity connected to fundamental biological concepts with
broad relevance to all organisms with small propagules.

Integrate lichens into biodiversity science
Lichens are integral to ecosystems, the environment, and human society at large [7]. Yet, in the
midst of the current planetary crisis and collapse of natural systems, comprehensive understand-
ing of these essential organisms continues to be sabotaged by a synergy of multiple factors.
There is a widespread, erroneous perception of lichens as having minor importance on the global
stage of biodiversity. At the same time they are considered fundamentally unknowable, intracta-
ble study systems. Finally a legacy of academic discrimination, stemming from centuries old tax-
onomic misclassifications, continues to result in study of lichen symbionts by-and-large in
isolation from their closest evolutionary relatives. Reinterpretation and reconceptualization of li-
chen biology is key to accurately integrating these remarkable symbioses into global biodiversity.

Concluding remarks
Fungal symbioses are diverse, dynamic interactions at the nexus between macroscopic and
microscopic realms. These complex relationships weave throughout the evolutionary history of life
on Earth, connecting diverse kingdoms and global ecosystems across space and time. Historical
perspectives of symbioses were dominated by assumptions of strong symbiont specificity and
binary species–species interactions. Ample evidence has now demonstrated that for mutualistic
symbioses success lies in flexible trans-kingdom partnerships. We propose that lichens are iconic
mutualisms poised to be the next model system that synthesizes and accelerates theory and
practice in symbiotic ecology and evolution (see Outstanding questions).
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