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Lichen natural products are a tremendous source of new bioactive chemical

entities for drug discovery. The ability to survive in harsh conditions can be

directly correlatedwith the production of some unique lichenmetabolites. Despite

the potential applications, these unique metabolites have been underutilized

by pharmaceutical and agrochemical industries due to their slow growth, low

biomass availability, and technical challenges involved in their artificial cultivation.

At the same time, DNA sequence data have revealed that the number of encoded

biosynthetic gene clusters in a lichen is much higher than in natural products, and

the majority of them are silent or poorly expressed. To meet these challenges,

the one strain many compounds (OSMAC) strategy, as a comprehensive and

powerful tool, has been developed to stimulate the activation of silent or cryptic

biosynthetic gene clusters and exploit interesting lichen compounds for industrial

applications. Furthermore, the development of molecular network techniques,

modern bioinformatics, and genetic tools is opening up a new opportunity for

themining, modification, and production of lichenmetabolites, rather thanmerely

using traditional separation and purification techniques to obtain small amounts of

chemical compounds. Heterologous expressed lichen-derived biosynthetic gene

clusters in a cultivatable host o�er a promising means for a sustainable supply of

specializedmetabolites. In this review, we summarized the known lichen bioactive

metabolites and highlighted the application of OSMAC, molecular network, and

genomemining-based strategies in lichen-forming fungi for the discovery of new

cryptic lichen compounds.
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Introduction

Plant-derived natural products or their derivatives were a valuable source of therapeutic

agents and played a key role in the treatment of various diseases, e.g., cancer chemotherapy,

infectious diseases, cardiovascular diseases, and lipid metabolism disorders (Mann, 2002;

Newman and Cragg, 2012; Atanasov et al., 2015;Waltenberger et al., 2016). However, natural

plant product-based drug discovery has some difficulties because of technical barriers to

screen natural products in high-throughput assays against molecular targets and synthetic

compounds not meeting the expectations of an increasing number of new drugs reaching

the market (Atanasov et al., 2015), thus scientists have had to turn their attention to other
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organisms. Microbes have proven to be a bountiful source of

secondary metabolites that have been successfully developed as

crucial drug leads. We have already known that the structures of

over 80,000 natural products from microbes (Demain, 2014) and

over 80% of the antibiotics are produced by microbes (de Lima

Procópio et al., 2012) since the discovery of penicillin in 1928

(Demain, 2014). Due to the extensive use of antibiotics for common

infections, pathogens are showing high resistance (Harikumar and

Krishanan, 2022); therefore, there is an urgent need for finding

novel drugs. Grube made a point of view that microbial symbioses

have a high potential leading to a wide variety of unique structures

and metabolic activities (Grube and Berg, 2009).

Several studies have shown that lichens are productive

organisms for the synthesis of a broad range of secondary

metabolites. Lichen is a stable community in the ecosystem of the

Earth’s biosphere, which is composed of a mutualistic relationship

between fungi and algae or between fungi and cyanobacteria

(Figure 1). However, the identity of lichens is considered based

on the fungal partner, and to date, the predominant records of

lichens that have been identified are ascomycetes in nature. Thus,

the term “lichen-forming fungi (LFF)” refer to the fungi that live in

lichen thallus throughout the entire life cycle by establishing a co-

benefit symbiotic relationship without causing any adverse effect

and are different from those endolichenic fungi (Muggia et al.,

2009).

Evidence from lichen fossils indicated that the interactions

between fungi and algae have existed for at least 400 million

years (Lücking and Nelsen, 2018), and studies have shown that

lichen occurs over 10% of the terrestrial surface, especially extreme

and aggressive environmental conditions that are not conducive

to individual survival, such as extreme cold Arctic and Antarctic

regions (Lee et al., 2014), hot and arid deserts (Kranner et al.,

2008), alpine areas with strong UV irradiation, and on rocks

or non-fertile soils (de Vera et al., 2003; Seymour et al., 2005;

Boustie et al., 2010; Nguyen et al., 2013). This tendency of lichens

to tolerate the extreme environment can be correlated with the

production of both a unique and diverse range of metabolites

known as lichen substances (Schweiger et al., 2022). Fungi and

algae co-evolved unique biosynthetic pathways and metabolic

mechanisms to synthesize these complex metabolites over a long

period of time. Primary and secondary metabolisms are the two

main groups of lichen compounds. Primary metabolism is the

basic substance constituting the structure of lichen and includes

proteins, amino acids, carotenoids, polysaccharides, and vitamins

(Goga et al., 2020; Packiam and Perumal, 2022). The fungal

filaments provide small, structurally complex, water-insoluble, and

crystalline secondary metabolism, which can comprise up to 20%

of the dry mass of thallus weight (Nguyen et al., 2013; González-

Burgos et al., 2019; Zhao et al., 2021). Unlike primary metabolites,

lichen secondary metabolism is not directly involved in growth but

synthesized for algae or cyanobacteria protection (Muggia et al.,

2009).

Lichens are known to produce small molecular compounds

such as aliphatic and aromatic compounds, thus far, over 1,000

compounds have been identified (Shrestha and St. Clair, 2013).

According to biosynthetic origins and chemical structures, lichen

compounds were classified (Culberson and Elix, 1989), which

were synthesized by acetyl-malonate, mevalonate, and shikimate

pathways existing in all organisms as key routes for natural

metabolism. The biosynthesis of lichen depsides, depsidones,

dibenzofurans, chromones, xanthones, and anthraquinones occurs

via the acetyl-malonate pathway, by which most bioactive

compounds are synthesized, with coenzyme A as the precursor

and polyketide synthase (PKS) as the responsible enzyme (Ibrahim

et al., 2018). The most common lichen compounds synthesized

by this pathway include evernic acid (Muggia et al., 2009),

lecanoric acid (Lawrey, 1986), gyrophoric acid (Garima et al.,

2022a), atranorin (Lawrey, 1986; Majchrzak-Celinska et al., 2022),

thamnolic acid (Culberson et al., 1986; Jeong et al., 2021),

umbilicaric acid (Posner et al., 1991; Yoshimura et al., 1994),

protocetraric acid (Nishanth et al., 2015), fumarprotocetraric

acid (Igoli et al., 2014; Ranković and Mišić, 2014), stictic acid

(Bellio et al., 2017; Pejin et al., 2017), usnic acid (Moreira

et al., 2015; Sepahvand et al., 2021), lepraric acid (Aberhart

et al., 1969; Murugan et al., 2021), and thiophanic acid (Arshad

et al., 1968; Dayan and Romagni, 2001). Usnic acid, one of

the most common, isolated, and discussed lichen compounds,

is well-known as an antibiotic with many pharmacological

activities including antibacterial, antiprotozoal, anti-cytotoxic,

anti-proliferative, antioxidant, and anti-inflammatory (Cocchietto

et al., 2002). The mechanisms of bioactivity of usnic acid modify

the structures of proteins causing irreversible changes and may

even produce apoptosis. Lichen also produces an array of secondary

metabolites derived from the mevalonate pathway, which play

essential roles in the regulation of cell growth and development,

and the products appear to be potentially interesting therapeutic

targets for many areas of research such as oncology, autoimmune

disorder, atherosclerosis, and Alzheimer disease (Buhaescu and

Izzedine, 2007). The mevalonate pathway is mainly associated with

the production of terpenes, steroids, and carotenoids (Goga et al.,

2020). Until now, more than 20 different triterpene compounds

from lichens have been reported. The shikimic acid pathway,

ubiquitous in microorganisms and plants, provides precursors for

the biosynthesis of primary metabolites such as aromatic amino

acids and folic acid (Wilson et al., 1998). This pathway is mainly

related to pulvinic acid and terphenylquinone pigments (Edwards

et al., 2003), which help lichen adapt to UV stress by absorption and

re-emitting the UV radiation as fluorescence or heat (Nguyen et al.,

2013). The representative structures of lichen natural products are

shown in Figure 2.

Lichen cells contain many types of natural metabolites and

other bioactive molecules, receiving increased attention due to

their industrial, pharmaceutical, biotechnological, medical, and

cosmetics applications (Elkhateeb and Daba, 2019). Many studies

have supported the potentiality of different lichen species to

produce unique natural compounds with different physicochemical

and biological activities (Hamida et al., 2021). Their utilization

in folklore as medicines in the treatment of diverse diseases,

such as arthritis, alopecia, constipation, kidney diseases, leprosy,

pharyngitis rabies, infection, worm, and infestation for several

centuries, has been recorded in different pharmacopeias by native

Americans, Haitian, Indians, Chinese, and Europeans (Romagni

and Dayan, 2002; Elkhateeb and Daba, 2019). In Table 1, the

known lichen natural products with different bioactivities were

Frontiers inMicrobiology 02 frontiersin.org

https://doi.org/10.3389/fmicb.2023.1177123
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Ren et al. 10.3389/fmicb.2023.1177123

FIGURE 1

The diversity of lichens. (a) Cladonia sp.; (b) Candelaria sp.; (c) Stereocaulon sp.; (d) Sticta sp.; (e) Pyrenula sp.; (f) Thallus of Endocarpon pallidulum in

vertical section, with green algae Diplosphaera chodatii as the photobiont; (g) Thallus of Peltula submarginata in vertical section, with cyanobacteria

Chroococcales as the photobiont. Photos (b, f) were taken by Xue XD and Zhang TT, respectively, and photos (a, c–e) were taken by Yang QX. Scale

bars: (f) = 20µm, (g) = 10µm.

summarized, among which most were isolated from the natural

lichen thallus.

Strategy to discover lichen natural
products

Despite the great potential of lichen bioactivity, lichens have

been long neglected by mycologists and overlooked by the

pharmaceutical industry. One reason is their slow growth in

nature and difficult culture in either fermenters or glasshouses,

or even cultivated in the open air, and has scarcely been

studied from a biochemical perspective; another reason is due

to difficulties in obtaining them in sufficient quantities and

purities for structural elucidation and pharmacological research.

These circumstances prompted lichenologists to develop more

suitable strategies to look for more lichen compounds in categories

and activities.
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FIGURE 2

Representative lichen metabolites derived by LFF. *Indicates the chiral centers.

OSMAC strategy

To improve the production of a wider range of natural

products from a microorganism, different culturing conditions are

generally used. Bode et al. refer to the fact that a single strain

is capable of producing a diverse array of structural compounds

under specific growth conditions (Zahroh et al., 2022), however,

never produces the entire compounds at the same time under

one set of environmental conditions because it is not matching

with a cost between energetic and metabolism (Zarins-Tutt et al.,

2016). Very small changes in the cultivation parameters, such

as culture medium composition, pH, temperature of growth,

salinity, aeration, and even the shape of culture vessel used,

can completely alter, induce, or optimize the physiology of a

microbial strain and in turn significantly affect the biosynthesis

of such metabolites (Bode et al., 2002). For example, bioactivity-

guided isolation of the fungus Aspergillus versicolor KU258497

yielded two new and six known cryptic metabolites when co-

cultivated with the bacterium Bacillus subtilis 168 trpC2 on

solid rice medium, among which one new compound showed

strong cytotoxic activity against the mouse lymphoma cell line

L5178Y (Abdelwahab et al., 2018). A corresponding strategy

named OSMAC (one strain of many compounds) opened up

a new industrial production avenue for compounds needed.

For lichens, the majority of the bioactive compounds are

exclusively produced by the LFF; however, there are some instances

where the symbiotic photobiont, particularly cyanobacteria also

engaged in the production of some key secondary metabolites

(Cox et al., 2005).

It has been indicated that there is a strong application basis

of OSMAC in discovering lichen natural products. Especially,

lichenologists from all over the world are becoming more andmore

interested in not only physiology but also metabolite production

(Crittenden and Porter, 1991), thus, they hoped that mycelium

from the lichen thallus may be free-grown on artificial medium and

produced lichen compounds without the algal or cyanobacterial

partners. The tissue culture method invented by Yoshimura et al.

(1993), a technique for the separation of the LFF from lichen thallus

and culturing it alone, greatly pushed the fulfillment of this process.

However, growth rate and metabolite yield in LFF are inverse

relationships (Timsina et al., 2013) and are influenced by culturing

conditions, such as the availability and type of carbon and nitrogen

source (Calvo et al., 2002; Behera et al., 2006; Verma et al., 2012).

Simple sugar such as glucose, sucrose, and polyethylene glycol as

sole carbon sources supported high LFF growth and production of

usnic acid in Usnea ghattensis culture, in contrast, nitrogen sources

such as amino acids (glycine, asparagine, alanine, or vitamins),

especially glycine, supported the LFF growth but did not well-

support usnic acid production (Behera et al., 2006). A strain of

LFF isolated from a thallus of Parmotrema reticulatumwas cultured

on different culture media, and all the colonies developed well;

however, atranorin, the major cortical lichen depside, was only
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TABLE 1 The known lichen bioactive natural products from a thallus or LFF cultures.

Class of
compound

Natural
compound

Bioactivity Lichen species References

Aliphatic and
cycloaliphatic compound

D-protolichesterinic
acid/nephrosterinic acid

Anticancer Ramalina almquistii/Usnea

longissima

Bessadottir et al., 2015; Reddy
et al., 2019

Protolichesterinic acid Anti-bacterial/inflammatory
proliferation/antimicrobial/anticancer

Hypotrachyna

cirrhata/Cornicularia

aculeata/Cetraria islandica

Bessadottir et al., 2014;
Furmanek et al., 2021

Roccellic acid Antimicrobial Roccella montagnei Mishra et al., 2017

Anthraquinones Emodin Antifungal Xanthoria parietina/Caloplaca

aurantia/Nephroma laevigatum

Manojlovic et al., 1998

Fallacinal Antifungal Xanthoria parietina Manojlovic et al., 1998

Parietin Cytotoxicity/antimicrobial Xanthoria parietina Pichler et al., 2021

Depside Nordivaricatic acid Human leukocyte elastase inhibitor Parmelia saxatilis∗ Zheng et al., 2012; Díaz et al.,
2020

Atranorin and
derivatives

Anti-hepatitis C
virus/anticancer/antimicrobial

Stereocaulon evolutum/Cladonia

rangiferina/Parmotrema

austrosinense

Lawrey, 1986; Kumar et al.,
2018; Tekiela et al., 2021;
Majchrzak-Celinska et al.,
2022

Baeomycesic acid Anticancer Thamnolia vermicularis var
subuliformis/T. subuliformis

Ingolfsdottir et al., 1997

Chloroatranorin Antimicrobial Pseudevernia

furfuracea/Hypotrachyna

cirrhata/Parmotrema austrosinense

Türk et al., 2006; Kumar et al.,
2018; Furmanek et al., 2021

Erythrin Antioxidant Parmotrema grayana Thadhani et al., 2011

Evernic acid Antibiotics/antioxidant/cytotoxic Evernia prunastri/E.

divaricata/Pseudoevernia

furfuraceae/Roccella montagnei

Lawrey, 1986; Kosanic et al.,
2013; Mishra et al., 2017

Isidiphorin Antioxidant Usnea longissima/Lobaria

pulmonaria

Atalay et al., 2011

Isodivaricatic acid Antifungal/antiprotozoal Protousnea poeppigii Schmeda-Hirschmann et al.,
2008

Lecanoric acid Anticancer/antioxidant/inhibitor of
histidine decarboxylase/antifungal

Umbilicaria

antarctica/Parmotrema

tinctorum/Roccella

montagnei/Parmelina tiliacea∗

Umezawa et al., 1974; Lopes
et al., 2008; Luo et al., 2009;
Tatipamula et al., 2019; Díaz
et al., 2020;
Majchrzak-Celinska et al.,
2022

Lepraric acid Antibacterial Roccella phycopsis Parrot et al., 2015

Olivertoric acid Antimicrobial Pseudevernia furfuracea Türk et al., 2006

Perlatolic acid Anti-inflammatory Cetrelia monachorum Oettl et al., 2013

Squamatic acid Anticancer Cladonia. unclalis Majchrzak-Celinska et al.,
2022

Depsidone α-Collatolica acid Antimicrobial Lecanora atra/Arctoparmelia

centrifuga∗
Neeraj et al., 2011; Pierangelo
et al., 2015; Bellio et al., 2017;
Díaz et al., 2020

Lobaric acid Cytotixic/anti-
inflammatory/antimicrobial/enzyme
inhibition/muscle
relaxant/antioxidant/

Stereocaulon alpinum/S.

paschale/Usnea

longissima/Cladonia sp./Parmelia

saxatilis∗

Gissurarson et al., 1997; Seo
et al., 2009; Thadhani et al.,
2011; Pierangelo et al., 2015;
Joo et al., 2016; Kwon et al.,
2016; Bellio et al., 2017;
Claudia et al., 2018; Hong
et al., 2018; Kim, 2018; Emsen
et al., 2019; Lee et al., 2019;
Díaz et al., 2020

(Continued)
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TABLE 1 (Continued)

Class of
compound

Natural
compound

Bioactivity Lichen species References

Norstictic acid Antimicrobial/cytotoxic/antioxidant Toninia candida/Ramalina

farinacea/Stereocaulon

montagneanum/Usnea

strigose/Xanthoparmelia tinctina∗

Tay et al., 2004; Rankovic
et al., 2012; Ebrahim et al.,
2016; Ismed et al., 2017; Díaz
et al., 2020

Stictic acid Cytotoxic/antibiotics/antioxidant Lobaria pulmonaria/Rhizoplaca

aspidophora/Xanthoparmelia

camtschadalis/S.

montagneanum/Hypotrochyna

revolute/Usnea longissima

Papadopoulou et al., 2007;
Atalay et al., 2011; McGillick
et al., 2016; Bellio et al., 2017;
Ismed et al., 2017; Pejin et al.,
2017

Fumarprotocetrari acid Antimicrobial/antioxidant
expectorant/photoprotection

Cladonia foliacea/Cetraria

islandica/Cladonia

verticillaris/Lasallia

pustulata/Evernia prunastri

Lawrey, 1986; Dévéhat et al.,
2013; de Barros Alves et al.,
2014; Igoli et al., 2014;
Ranković and Mišić, 2014;
Tekiela et al., 2021

Physodic acid Anticancer/antioxidant/antimicrobial Hypogymnia physodes/Evernia

prunastri/Pseudevernia furfuracea

Kosanic et al., 2013;
Majchrzak-Celinska et al.,
2022

Salazinic acid Anti-
Alzheimer/antioxidant/anticancer/
antibacteria

Parmelia sulcata/P.

saxatilis/Everniastrum

cirrhatum/Rimelia

cetrata/Leucodermia

leucomelos/Xanthoparmelia

camtschadalis

Manojlovic et al., 1998;
Gaikwad et al., 2014; Bellio
et al., 2017; Paluszczak et al.,
2018; Furmanek et al., 2021;
Majchrzak-Celinska et al.,
2022

α/β-Alectoronic acid Antimicrobial/anticancer Alectoria sarmentosa∗/Parmelia

tiliacea∗/Xanthoparmelia

tinctina∗/Arctoparmelia centrifuga∗

Gollapudi et al., 1994; Díaz
et al., 2020

Physodic acid Anticancer/antioxidant/antimicrobial Parmelia saxatilis∗ Díaz et al., 2020

Neuropogonines A-C Antimicrobial Neuropogon sp. Ivanova et al., 2002

Pannarin Anticancer Psoroma reticulatum Russo et al., 2006, 2008

Pseudodepsidones 1 and
2

Anti-diabetes Stereocaulon alpinum Seo et al., 2009

Psoromic acid Antibiotics/antivirus Usnea spp./Psoroma spp./Alectoria
spp.

Lawrey, 1986

Pulmonarianin Lipid peroxidation
inhibition/antioxidant

Usnea longissima/Lobaria

pulmonaria/Xanthoparmelia

tinctina∗

Atalay et al., 2011; Díaz et al.,
2020

Dibenzofuranes Usnic acid and
derivatives

Antimicrobial/analgesic/antipyrietic/anti-
inflammatory,
anti-cancer/antimutagrnic
activity/enzyme
inhibitor/anti-allergies/antivirus/plant
growth inhibitor

Usnea spp./Ramalina spp.∗/U.
longissima∗

Lawrey, 1986; Wang et al.,
2014; Moreira et al., 2015;
Sepahvand et al., 2021

Didepsides Barbatic acid Anticancer Usnea longissima Reddy et al., 2019

Divaricatic acid Antimicrobial Evernia divaricata Çobanglu et al., 2010

Diffractaic acid Antioxidant/anti-inflammatory Usnea longissima/Lobaria

pulmonaria

Bayir et al., 2006; Atalay et al.,
2011

Sekikaic acid Anticancer/antivirus Ramalina farinacea Yousuf et al., 2014

Dimeric
tetrahydroxanthone

Hirtusneanoside Antibacterial Usnea hirta/Ramalina

farinaceae/Peltigera polydactyla

Rezanka and Sigler, 2007

Lichenan β-D-1,3/1,4-glucan Wound healing Cetraria islandica Zacharski et al., 2018

Monocyclic aromatic
compound

Atranol Antimicrobial Roccella montagnei Tatipamula et al., 2019

Orcinol Antimicrobial Roccella montagnei Tatipamula et al., 2019

Orsellinic acid Antimicrobial Parmotrema austrosinense Kumar et al., 2018

(Continued)
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TABLE 1 (Continued)

Class of
compound

Natural
compound

Bioactivity Lichen species References

Phenanthrenequinones Biruloquinone Achtylcholine inhibitor Cladonia macilenta∗ Luo et al., 2013

Acetylcholinesterase inhibitor Luo et al., 2013

Poly-carboxylic fatty acid Caperatic acid Anti-inflammatory/cytotoxity/central
nervous system therapeutics

Platiamatia glauca Majchrzak-Celinska et al.,
2022; Studzinska-Sroka et al.,
2022

Polysaccharides Polysaccharides Antioxidant/anticancer/antiviral Umbilicaria esculenta/Parmelia

perlata

Olaleye et al., 2007; Sun et al.,
2018; Wang et al., 2018

Pulvinic acid derivatives Vulpinic acid Antibiotics Letharia columbiana/L.

vulpina/Pseudocyphellaria

flacicans/Vulpicida pinastri∗

Lawrey, 1986; Kowalski et al.,
2011

Terphenylquinine Polyporic acid Anticancer Sticta coronata Goga et al., 2020

Thelephoric acid Antioxidant/anti-alzheimer Lobaria isidiosa Rao et al., 1965; Kwak et al.,
1999; Chon et al., 2016

Tridepsides Gyrophoric acid Anticancer Umbilicaria sp./U. freyi∗ Burlando et al., 2009; Garima
et al., 2022a

Tenuiorin Anticancer Peltigera aphthosa/Lobaria

linita/Pseudocyphellaria crocata

Ingolfsdottir et al., 2002

Triterpenoids Zeorin Antimicrobial Leucodermia leucomelos Furmanek et al., 2021

∗Represents the lichen compounds from LFF cultures besides lichen thallus in this species.

detected when the colonies were grown over 5 and 10 months on

solid LB medium. By comparison, colonies grown on MEYE and

MY10 with a gradually dry treatment did not synthesize any lichen

secondary metabolite of polyketides but primary triacylglycerides

and fatty acids as the major metabolites (Fazio et al., 2009).

Bu’Lock proposed that mycelial growth was slow under

conditions of poor nutrition, but secondary metabolism could

be induced (Bu’Lock et al., 1974), which is related to the
carbon-nutrient balance hypothesis (Bryant et al., 1983). From

LFF of Endocarpon pusillum cultured on the optimized PDB,
nine secondary metabolites including two new isoindolin-1-

ones were detected, while three known compounds and a new
naphthoquinone were isolated from the rice culture (Liu R. D. et al.,
2022). Temperature is another important factor influencing LFF

cultivation and chemical diversity in secondary metabolism. It is
due to higher or lower temperatures that will inhibit the enzyme

secretion of LFF (Feller et al., 1994).

Therefore, it is greatly deserved to expect more lichen natural

products will be discovered by OSMAC strategy after changing

and improving a series of cultural conditions. However, there is
an inevitable problem existing in this process, that is, what is

the relationship between more lichen products and the valuable

bioactivity of these products because lichen secondary metabolism

mainly originates from the fungal partner, i.e., LFF, but is produced

when the organisms are in symbiotic association (Moreira et al.,

2015). Poor nutrition sources and slow growth rate are the

natural factors in LFF decided by the characteristics of lichen

symbiosis. Heterodea muelleri in the field produced diffractaic

and barbatic acids, whereas the LFF cultures did not contain any

detectable secondary metabolites (Hager et al., 2008). The study

of temperature by Hamada in LFF and lichen thallus of Ramalina

siliquosa examined changing of polyketides, that is, the quantity of

depside produced by LFF of Ramalina siliquosa was the highest

at optimal culture conditions (Hamada, 1989), on the contrary,

depsidone was increased in R. siliquosa thallus (Hamada, 1981).

Brunauer showed that the LFF of Xanthoria elegans produces

secondary metabolism that is not present in the naturally collected

lichen thallus by HPLC examination because the presence of gene

clusters enables LFF to produce a potentially larger variety of

polyketides than thallus (Brunauer et al., 2007). Another example,

two new dibenzofurans, isostrepsilic acid and hypostrepsilic acid,

are synthesized in large quantities by LFF culture of Umbilicaria

orientalis on malt-yeast extract medium containing sugar alcohols,

but they have not been produced by this lichen in the field

(Kon et al., 1997). The production of lichen compounds is

based on the resistance to extreme environments, and if the

environment changes, the interactions between lichen and the

environment will change, similarly, LFF is out of symbiosis when

they grow on the culture medium and equal to the environment

change; thus, the compounds of LFF are different from lichen

symbiont, and correspondingly, some lichen bioactive compounds

cannot be detected in the LFF cultures (Dayan and Romagni,

2001).

However, when quantitatively and variously LFF metabolites

were obtained after more focusing on fermentation broth and

mycelium, they were often found different from those contained

in the natural lichen thallus (Miyagawa et al., 1993), while the

reason why we are interested in the lichen natural products is

due to the bioactive metabolites produced by the symbiotic lichen

thallus. Whether the bioactivity of more and different lichen

natural products produced in the LFF by OSMAC strategy is

much better than those less in the lichen thallus is not fully

understood. Anyway, there would be a long way to go on well

balancing this current conflict. Well understanding and solving

this problem still need to establish on the more and more

discovering of lichen natural products through OSMAC under
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breaking the lichen symbiosis, which is also closely related to the

requirement of increasing the growth rate of LFF. Here, we present

Table 2 to show some optimized media and cultural conditions

being reported.

MS-based spectrometry as the core
technology—Molecular network strategy

In the search for secondary metabolisms, analytical methods

must be determined to use for the detection of the compounds

(Scherlach and Hertweck, 2009; Tarkka et al., 2009; Palazzotto

and Weber, 2018; Manish and Yogesh, 2019). The methods for

identification and determining lichen metabolites in the liquid

or solid medium are traditionally chemical empirical processes,

which include classic spot tests, micro-crystallography, TLC, and

HPLC. Kim confirmed the metabolite of Cladonia rangiferina by

using HPLC and reported that usnic acid could not be found

in C. rangiferina despite the gene cluster producing usnic acid

being observed in the genome (Kim et al., 2021). However,

these cheap but not sensitive enough methods will fail when

the quantities of metabolites are below the detection limit or

when the similar retention time of other metabolites overlaps

(Egbert et al., 2022).

Mass spectrometry (MS) is a fast, modern, and simple tool for

the structure identification of chemical substances (Wambui et al.,

2021), and many lichen compounds and functional groups have

been identified using MS (Huneck, 1999). In recent years, several

studies focusing on lichen chemistry highlighted the use of a range

of hyphenated technology. Mass spectrometry (MS), due to its

sensitivity and Nuclear Magnetic Resonance (NMR) spectroscopy

coupled with chromatographic techniques, has been recognized as

a key technology to study metabolomics (Krug and Muller, 2014).

It has been well-demonstrated that liquid chromatography (LC)–

MS/MS is considerably more sensitive for the analysis of usnic acid

(Cansaran et al., 2006; Sveshnikova et al., 2019; Xu et al., 2022).

Mass spectrometry (MS)/MS-based molecular networking

and extensive spectroscopic analyses involving GIAO (Gauge-

Independent Atomic Orbital) NMR shift calculation led to the

isolation and identification of novel quinoid lichen pigments

(Lagarde et al., 2021). However, although MS is the most sensitive

and powerful method which detects and elucidates extremely low-

abundance metabolites occurring in natural product research, it

does not provide any information concerning the spatial and

temporal distribution of metabolites. Mass Spectrometry Imaging

(MSI) visualizes the production, location, and distribution of

metabolites, which is newly used in lichens to visualize the

accumulation of various polyketides such as parietin, physodic acid,

atranorin, and pinastric acid in different tissues of the lichen and

localize the phenolic compounds (Gadea et al., 2020). Desorption

electrospray ionization-imaging mass spectrometry (DESI-IMS)

realized the spatial distribution of usnic acid in cross-sections of

the lichen thallus (Xu et al., 2022).

Some other MS-based metabolomics tools, such as electron

ionization-mass spectrometry (EI-MS) (Kai et al., 2017), high

performance liquid chromatography-diode array detector-mass

spectrometry (HPLC-DAD-MS) (Castro et al., 2017), electron

spray ionization-mass spectrometry (HESI-MS/MS) fragmentation

patterns (Castro et al., 2017), and liquid chromatography-

diode array detector-tandem mass spectrometry (UPLC-PDA-

MS/MS) (Kumar et al., 2018), also help to identify various novel

lichen metabolites and increase the understanding on a complex

biological system.

To facilitate the lichen chemistry, an open-accessMS/MS-based

library with 250 metabolites known as the Lichen DataBase (LDB)

was published byOlivier–Jimenez team. To aid this area of research,

the MetaboLights database was generated containing the MS

spectra of metabolites. Complementing this, the GNPS platform

(CCMSLIB00004751209 to CCMSLIB00004751517) contains the

merged spectra of these metabolites within a metadata file. Such

a fundamental database empowers research on lichen chemistry by

prioritizing novel metabolites (Olivier-Jimenez et al., 2019).

In addition to MS, NMR spectroscopy has also been widely

used to determine the structure of organic molecules, which is

typically coupled with LC/GC for quantitative analysis of low

molecular weight compounds. Metabolite profiles in crude extracts

of Xanthoria elegans thalli during hydration and dehydration

were assessed by using 31P- and 13C-NMR, and approximately

30 metabolites were identified and quantified (Aubert et al.,

2007). The 1H-NMR spectra of Xanthoria parietina and Peltigera

horizontalis crude extract displayed lichen-specific features with

strong signals and confirmed untargeted analysis on a quantitative

basis (Eisenreich et al., 2011). Moreover, NMR demonstrates which

atoms are present in neighboring groups. Ultimately, NMR can

provide information on how many atoms are present in each

of these environments (Altemimi et al., 2017). Other imaging

techniques such as Raman microscopic analysis can provide time-

resolved information about the distribution of major compounds

in lichens (Edwards et al., 1997; Liao et al., 2010; Gadea et al., 2020;

Xu et al., 2022). FTIR imaging and Raman microscopy were used

to localize the presence of usnic acid in Cladonia arbuscular, C.

Uncialis, and C. sulphurina (Liao et al., 2010).

Genome mining-based strategy

If it is the common fact that is not easily solved now about

the conflict between more lichen natural products by OSMAC

from LFF cultures and uncertain or not very well bioactivity

compared with those isolated from lichen thallus, genome mining-

based strategy will be a more explicit way to discover lichen

natural products. With the development of bioinformatics and

the applying next-generation sequencing data, there has indeed

been more focus on natural product discovery based on genomics

(Garima et al., 2022b; Luo et al., 2022). Genome mining has

become a powerful tool to discover compounds, identify cryptic

biosynthetic gene clusters, characterize the potential biosynthetic

pathways, and predict the skeletal structure of the relative products

(Liu Q. et al., 2022; Liu T. et al., 2022; Kalra et al., 2023).

An increasing understanding of high-quality genome sequencing

and genome mining techniques coupled with the introduction

of powerful computational toolkits facilitates the process of

connecting these gene clusters with key compounds (Li et al.,

2016). Comparing the traditional method for the identification of
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TABLE 2 Optimized media and culture conditions for lichen-forming fungi (LFF).

LFF species Medium Culture condition Note References

Usnea ghattensis MY+ 10mM Sucrose+ 10mM
Polyethylglycol

18◦C, 8 h light (400 lux)/16 h dark
and 50–80% relative humidity, 3
months

Accelerated the growth via
activating the cytochrome
respiratory system

Verma et al., 2011

Haematomma sp.

Graphis proserpens

MY+ 10% sucrose −18◦C in the dark for 11 months Promote the production of
new compounds Takenaka et al., 2011;

Tanahashi et al., 2017

Endocarpon pusillum Optimized PDA: 2 g/L yeast extract, 2
g/L soy peptone, 40 g/L sucrose, 200 g/L
boiled potato juice

19◦C on a rotary shaker at 120 rpm
for 100 days

Accelerated the growth

Zhang and Wei, 2011

Usnea longissima MY+ 2% or 10% (w/v) inositol, annitol,
sorbitol, sucrose, glucose, or fructose.

Aer 2 months of culture on MY
basal medium 15◦C, the mycelia
were transferred into optimized
MY medium

Accelerated the growth

Wang et al., 2011

Evernia divaricata LB+ 20ml bark extreact – Promote the production of
polyketides compounds Stocker-Wörgötter and

Hager, 2008

Heterodea muelleri LB+ 20ml soil extract – Promote the production of
polyketides compounds Stocker-Wörgötter and

Hager, 2008

Cryptothecia rubrocincta LB+ 4% erythriol Promote the production of
polyketides compounds Stocker-Wörgötter and

Hager, 2008

Cladonia furcata LB+ 4% ribitol Promote the production of
polyketides compounds Stocker-Wörgötter and

Hager, 2008

Bunodophoron

patagonicum

MS+ 4% sucrose Promote the production of
polyketides compounds Stocker-Wörgötter and

Hager, 2008

Stereocaulon ramulosum Sabouraud 4% glucose agar Promote the production of
polyketides compounds Stocker-Wörgötter and

Hager, 2008

Peltigera aphthosa Mix medium: (8 g/L) Peptone from
meat, (8 g/L) Peptone from caseine, (20
g/L) Malt extract, (3 g/L) yeast extract,
(5 g/L) Nacl, (40 g/L) Glucose, (15 g/L)
Agar

Promote the production of
polyketides compounds Stocker-Wörgötter and

Hager, 2008

biosynthetic gene clusters by using MS and NMR-based, in silico

genome mining has become a crucial strategy for the discovery

and characterization of gene clusters (Alam et al., 2022). Many

web portals contain databases and tools to identify the metabolites

by using BLAST, Diamond, and HMMer alignment tools. After

uploading the genome to websites, the results of the detection

and characterization of secondary metabolites are achieved soon.

AntiSMASH (Medema et al., 2011), PRISM (Skinnider et al.,

2017), and MIBiG (Kautsar et al., 2020) are representative in silico

tools for predicting various types of gene clusters, and they were

developed to automate biosynthetic gene clusters instead of much

manual intervention in genome sequences (Kenshole et al., 2021).

Among those three tools, antiSMASH is the largest database of

biosynthetic gene cluster analysis, PKS, and non-ribosomal peptide

synthase (NRPS) substrate specificity prediction, as well as known

and unknown biosynthetic gene clusters comparison (Medema

et al., 2011). In addition, antiSMASH was used to predict the

molecular structure sequence database. In silico genome tool with

antiSMASH and BLAST2GO programs investigated the type I-PKS

module candidates in nine publicly available LFF genomes (Erken

et al., 2021). In addition, rule-based tools such as antiSMASH,

ClusterFinder, and RNNs, and machine learning tools have been

developed to allow the identification of unknown biosynthetic

gene clusters (Cimermancic et al., 2014; Hannigan et al., 2019).

However, a much higher false-positive rate than the rule-based

tools is the weakness of machine learning-based genome mining

tools. Open sources such as Prodigal and automated annotation

help reduce false-positive identification. All these softwares are

powerful tools that help to make genome mining in silico of the

interesting LFF.

The genome mining study of a few publicly available LFF

genomes suggested the importance of genome mining at the

strain level, as it increases the likelihood that researchers discover

useful derivatives of known secondary metabolites. An integrated

approach utilizing genomics and metabolomics is needed to

study the lichen complex systems. Recently, genome mining and
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comparative genomics strategy were used to assess biosynthetic

gene clusters and putative regulators of LFF Evernia prunastri

and Pseudevernia furfuracea. The results showed that the NR-

PKS from LFF Pseudevernia furfuracea produces depside lecanoric

acid, which has never been detected from lichen thallus in

nature (Calchera et al., 2019). Genome mining analysis based

on a homology searching approach revealed that enzymes of

grayanic acid, patulin, and betaenones A-C biosynthesis are

encoded by Cladonia uncialis genome (Bertrand et al., 2018),

and the result corresponds with Shishido et al. (2021). The

uptake of advanced analytical techniques and next-generation

computational tools brought a breakthrough in lichen chemistry

and resulted in the identification of various novel compounds.

Moreover, understanding the genetic components leading to

the biosynthesis of these metabolites provides an opportunity

to exploit their commercial utilization by employing synthetic

biology approach.

In LFF, polyketides are the most common class of secondary

metabolites. With the help of gene knockout studies, it has

been observed that cryptic PKS gene codes for PKS required for

the biosynthesis of the representative polyketide orsellinic acid.

Polyketides synthesized by three types of multidomain polyketide

synthases in the sequential acyl acetyl-polymalonyl pathway are

major, structurally diverse classes of natural products (Lin and

Qu, 2022; Liu Q. et al., 2022). In the case of bacteria and fungi,

PKSs belong to types I and II, while type III is present in higher

plants. Despite structural differences, almost all PKSs biosynthesize

polyketides via sequential decarboxylative Claisen condensation of

acyl-coenzyme A (CoA) precursors and use ketoacyl synthase to

catalyze the C–C bond formed during carbon chain assembly, and

this process is as similar as fatty acid synthases (Lin and Qu, 2022).

From the ecological perspective, these polyketide-based secondary

metabolites afford a large amount of cytotoxic or antibiotic

compounds to adapt to the competitive living environment. Many

of these compounds or their derivatives have emerged as clinically

useful drugs or are promising drug candidates. Genetic regulation

study of lichen or LFF secondary metabolism is at an early stage,

and as time passes and technology advances, more and more

research will be covered in this field (Valarmathi et al., 2009;

Calchera et al., 2019; Singh et al., 2021). Recently, several LFF PKS

genes have been cloned, such as type I NR-PKS geneXsmPKSI from

Xanthoria substrigosa (Hametner and Stocker-Wörgötter, 2015);

three new NR-PKS genes such as UlPKS2, UlPKS4, and UlPKS6

from Usnea longissima (Wang et al., 2014); and XsePKS1 from

Xanthoria semiviridis (Chooi et al., 2008). In addition, some studies

of polyketide synthase genes have also focused on phylogenomic

analysis (Proctor et al., 2007; Wang et al., 2018; Kealey et al., 2021).

The increasing number of phylogenomic analyses shows that a

single fungal genome may contain more than one PKS gene, and

each species of fungi can produce more than one polyketide or

polyketide family (Stocker-Wörgötter, 2008). For example, 12 PKS

genes have been identified in Cladonia grayi (Shukla et al., 2010).

Armaleo et al. (2011) identified a likely orcinol decided PKS and

other pathway genes in its metabolic cluster, and it was the first

genetic evidence for a complete depside/depsidone biosynthetic

pathway. Experimental data that seven complete non-reducing and

nine highly-reducing PKS genes indicated Nppks7 was a new PKS

that participated in usnic acid biosynthesis in LFF Nephromopsis

pallescens (Wang et al., 2018).

The complex lichen biology as filamentous fungi,

transcriptionally silent, and trace expression make an artificial

synthesis of interesting secondary metabolites difficult (Harvey

et al., 2018). Heterologous expression of biosynthetic gene clusters

in a non-natural host or model system expedites natural product

discovery, elucidation, and mass production. The apposite choice

of host is one of the keys to successful heterologous expression.

Due to many advantages, such as fast growth, high cell density, low

cost, simple cultivation medium, fast transformation procedure,

and ability to process and correctly splice introns, Saccharomyces

cerevisiae (Kealey et al., 2021), Fusarium venenatum (Sinnemann

et al., 2000), Aspergillus nidulans (Sinnemann et al., 2000), A. niger

(Sinnemann et al., 2000), A. oryzae (Gagunashvili et al., 2009),

and Neurospora crassa are the experimentally well-developed

strains and are considered as the potential hosts for the expression

of lichen DNA (Qiao et al., 2019). In other expression systems,

to avoid the influence of the surrogate host’s metabolism on

heterologous biosynthesis, Ascochyta rabiei, chosen as the host, is

a genetically tractable, wild-type plant-pathogenic fungus without

the biosynthetic gene cluster of phytotoxic solanapyrones (Kim

et al., 2021).

Using PKS genes as a heterologous expression of genes for

filamentous fungal secondary metabolites has been widely reported

(Gressler et al., 2011; Sakai et al., 2012; Qian et al., 2020).

Although PKS genes of lichen and filamentous fungi showed the

greatest homology, only a few PKS genes have been isolated and

characterized functionally from lichen or LFF. As the first PKS

gene from Solorina crocea LFF, PyrG encoding decarboxylase was

functionally expressed under its own promoter in A. nidulans

(Sinnemann et al., 2000). The result indicated that a heterologous

expression system is a useful tool for the functional characterization

of genes. Another example is that two pairs of degenerated primers

have been used to locate and clone PKS genes containing a CMeT

domain from Xanthoparmelia semiviridis (Chooi et al., 2008).

Early functional research of lichen PKS genes mainly focused on

symbiosis, physiology, and biochemistry because all the studies that

attempted to express the PKS gene of unique lichen compounds

failed (Chooi et al., 2008). Until recently, de novo biosynthetic

PKS genes of atranorin and lecanoric acid have been successfully

heterologously expressed (Kealey et al., 2021; Kim et al., 2021).

Atranorin is one of the most concerned lichen compounds. The

results from lichens such as Cladonia, Stereocaulon alpinum (Kim

et al., 2021), and Bacidia rubella (Gerasimova et al., 2022) revealed

that the PKS23 gene (atr1), a cytochrome P450 gene (art2)

for oxidation, an O-methyltransferase (OMT) gene (atr3), and

transporter gene (atr4) were involved in producing atranorin.

Conclusion and future perspectives

Lichen secondary metabolites are of major interest due to

their applicability as therapeutic agents. However, a special way

of symbiosis, extreme living environment, and slow growth of

lichen limit the constant need for lichen compounds in industry

and pharmacy. The analysis of genome sequence revealed that
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there exist silent biosynthetic gene clusters, which are usually not

expressed until being activated, leading to the discovery of lichen

compounds much inadequate. OSMAC strategy is a powerful

and mature method for enhancing the chemodiversity of LFF

natural compounds, under which new drugs could be obtained by

manipulating nutritional or environmental factors of fermentation

to activate silent gene clusters. However, sometimes, the results of

the OSMAC strategy are not very satisfying because it has a limited

capacity to mimic the complexities of natural environmental

changes. MS-based molecular network strategy further facilitates

lichen chemistry, especially linked to a series of databases such

as LDB and MetaboLights. Genome- and bioinformatics-based

genome mining strategy not only makes up for the difficulties and

shortcomings of the OSMAC strategy but also strongly pushes the

identification of biosynthetic gene clusters and increases the rate

of discovery of new products. Genome mining strategy, covering

several different usage cases in animal, plant, and microbe, shows

diverse ways, in which genomic data can be used to uncover

new secondary metabolites, improves our understanding of their

biosynthesis, and uncovers long-term biosynthetic mysteries, but

for lichen, it is just the beginning. Nowadays, various strategies for

inducing the expression of silent biosynthetic gene clusters have

been developed. However, each strategy has its own limitations,

and no strategy could be universal for all strains. Furthermore,

significant advances are needed in terms of the enrichment of

the database for lichen metabolites together with the general

standardization of different generations of data. A combination of

OSMAC, molecular network, and genome mining-based strategies

will be greatly helpful to predict the biosynthesis and accumulation

of specific natural products, discover numerous novel secondary

metabolites with a range of attractive bioactivities, and pursue the

establishment and maintenance of the lichen symbiosis.
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