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A research agenda for
nonvascular photoautotrophs
under climate change

Summary

Nonvascular photoautotrophs (NVP), including bryophytes,

lichens, terrestrial algae, and cyanobacteria, are increasingly recog-

nized as being essential to ecosystem functioning inmany regions of

the world. Current research suggests that climate change may pose

a substantial threat to NVP, but the extent to which this will affect

the associated ecosystem functions and services is highly uncertain.

Here,weproposea research agenda to address this urgent question,

focusing on physiological and ecological processes that link NVP to

ecosystem functions while also taking into account the substantial

taxonomic diversity across multiple ecosystem types. Accordingly,

wedeveloped a newcategorization scheme, based onmicroclimatic

gradients,which simplifies thehighphysiological andmorphological

diversity of NVP andworld-wide distributionwith respect to several

broad habitat types. We found that habitat-specific ecosystem

functions of NVP will likely be substantially affected by climate

change, and more quantitative process understanding is required

on: (1) potential for acclimation; (2) response to elevated CO2;

(3) role of the microbiome; and (4) feedback to (micro)climate. We

suggest an integrative approach of innovative, multimethod

laboratory and field experiments and ecophysiological modelling,

for which sustained scientific collaboration on NVP research will be

essential.

Introduction

Nonvascular photoautotrophs (NVP) include organisms of old
lineage, such as bryophytes (mosses, liverworts, and hornworts),
lichens, terrestrial algae, and cyanobacteria, which are all charac-
terized by their lack of vascular tissue. Without roots, NVP cannot
access water within the bulk soil and depend on direct uptake of
water from the atmosphere in the form of rainfall, dew, fog, and
water vapor, or contained in the near-surface layer of the
substratum. Due to the lack of active control on water loss, the
organisms frequently dry out. In contrast to most vascular plants,
however, they are able to substantially adapt their metabolism to
this large variation in their water content, which allows them to
thrive in epiphytic and lithic habitats without direct contact with
soil water. They are abundant world-wide, and communities of

NVPmay even represent the dominant form of vegetation inmany
ecosystems with limited water availability, such as deserts, tundra,
and at high elevations.

Nonvascular photoautotrophs have been suggested to perform
key processes in various ecosystems at the global scale (Fig. 1).
Mosses growing on the forest floor, for instance, may contribute
c. 50% to ecosystem nitrogen input via their association with
nitrogen-fixing bacteria (DeLuca et al., 2002). Epiphytic NVP in
forests may increase rainfall interception by > 60%, thus influenc-
ing precipitation partitioning, that is, the division of rainfall into
different pathways, such as throughfall, stemflow, and evaporation,
that ultimately return water to the atmosphere. This also affects
near-surface air temperature and plant available water (Porada
et al., 2018). Mosses contribute up to 50% of the aboveground net
primary productivity (Turetsky et al., 2012) in high-latitude
peatland ecosystems that are estimated to store 30% of global soil
carbon (Yu et al., 2010). In drylands, NVP form the major part of
biological soil crusts (biocrusts) that play a crucial role for ecosystem
carbon and nutrient cycling (Rodr�ıguez-Caballero et al., 2018a).
Furthermore, biocrusts have been shown to protect the soil surface
against erosion by water (Seitz et al., 2017) and wind (Duniway
et al., 2019) and regulate soil water content (Eldridge et al., 2020).
In addition to biogeochemical cycles of carbon, nutrients, and
water, NVP may have substantial biogeophysical effects on
ecosystems, such as impacts on albedo and soil temperature
(Bernier et al., 2011; Couradeau et al., 2016). At high latitudes,
insulation by mosses and lichens may cool the soil by > 2°C, thus
protecting permafrost carbon (Porada et al., 2016). Additionally,
NVP play key roles in food webs and successional processes in
multiple ecosystems (Asplund &Wardle, 2017; Lett et al., 2017).

Nonvascular photoautotrophs and their role in ecosystem
processes and services may be seriously affected by climate change
(Reed et al., 2012; Sancho et al., 2017; Rodr�ıguez-Caballero
et al., 2018a).Multiple studies suggest negative impacts of warmer,
drier air on the growth of NVP (e.g. Nascimbene et al., 2016;
Ladr�on deGuevara et al., 2018;Norby et al., 2019; Finger-Higgens
et al., 2022). Moreover, indirect effects, such as increased
competition with vascular plants, may further reduce NVP cover,
especially in the Arctic tundra and in high-elevation ecosystems
(Cornelissen et al., 2001). In general, however, it is uncertain how
NVPwill respond to climate change over the next decades, though,
as noted earlier, the response could havemajor consequences for the
biosphere. In particular, it is not known to what extent potential
changes in the composition of NVP communities will alter
ecosystem functions. In contrast to vascular plants, NVP have been
underappreciated by the wider scientific community as a relevant
source of ecosystem services, including climate regulation at the
global scale (Rodr�ıguez-Caballero et al., 2018b).

This article aims at promoting urgently required research,which is
necessary to better understand the responses of NVP to climate
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change and the associated potential consequences for their ecosystem
functions and services. As we focus on photoautotrophs, other
organisms that live together withNVP in cryptogamic communities,
such as (associated) heterotrophic microbes, are not explicitly
considered here. These organisms may also differ from NVP
regarding their response to climate change.

We assess knowledge gaps on overarching climate response
mechanisms that apply to a large range of NVP in multiple ecosystems.
The analysis of these general response patterns is complicated by
large intra and interspecific variations of NVP with regard to
physiological and morphological traits and a wide range of
environmental conditions in habitats of NVP. Therefore, we
introduce here a new framework for the categorization of habitat
types along microclimatic gradients. This broad concept helps to
identify potential general relations between climate and traits of
NVP, and it may provide indications for the reaction of NVP to
changes in climate.

Categorization of nonvascular habitat types along
microclimatic gradients

Nonvascular photoautotrophs occur over a wide range of climatic
conditions in almost all ecosystems of the world (see Fig. 1).
Their growth depends mostly on local microclimate, which may
differ substantially from climate at a larger scale (Raggio
et al., 2017; Colesie et al., 2018). To clarify the links between

microclimate, community structure of NVP, and ecosystem
functioning across various regions of the world, we propose here a
scheme for the categorization of nonvascular habitat types along
three microclimatic gradients, thereby also considering climatic
variability (see also Fig. 2): (1) ambient temperature during
activity, which may differ from diel and annual mean temper-
ature. When NVP are dormant, temperature does not have a large
influence on their metabolism (Proctor, 2000); (2) water
availability, which may result from high relative air humidity,
dew, fog, hoarfrost, direct rainfall or throughfall and stemflow
(Gauslaa, 2014), snow melt, or capillary rise in wetlands and
additionally depends on environmental structures, for example,
canopies or topography. Thus, water availability may differ
markedly from rainfall pattern and intensity; (3) light availability
during activity, which is influenced by cloud cover and fog
(Gotsch et al., 2016), light transmission under heterogeneous
plant canopies, snow cover (Pannewitz et al., 2003), or even
mineral layers in case of endo and hypolithic NVP (Weber
et al., 2011). Our scheme also considers climatic variability,
because any habitat type, defined by given temperature, water,
and light availability, may be further differentiated into regions of
high, medium, and low variability. We thereby integrate over
diurnal, seasonal, and interannual variability of one or more of
the microclimatic factors (Fig. 2).

We identified four broad habitat types: open ground surface
(which also includes rock surfaces), peatlands, forest understory, and

Fig. 1 Impacts of nonvascular photoautotrophs (NVP) on key aspects of ecosystem functioning (yellow boxes) in selected ecosystem types that show a high
abundance of NVP. The effects are categorized according to the interconnected biogeochemical cycles of carbon (grey arrow), nutrients (mainly nitrogen and
phosphorus) (orange arrow), andwater and energy (blue arrow). The cycles are arranged according to the supposed primary impacts of NVP in the respective
ecosystems. These impacts are, however, not limited to a specific ecosystem.
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vascular plants (trees or shrubs, for epiphytes). These habitat types
still containmarked variationwith regard to climatic factors and the
physiological or morphological traits of NVP. However, we expect
that they suitably differentiate key ecosystem functions and services
of NVP and help to define broad physiological strategies showing a
consistent response to climate change. As global warming is related
to the increase in atmospheric CO2 concentration, we also include
in our analysis CO2 as a factor that affects the growth of NVP. Our
categorization schememay be later extended by further dimensions
to account for nonclimatic effects on NVP distribution, function,
and services.

Potential impacts of climate change on key ecosystem
functions of NVP

Climate change effects are distributed unevenly over the global land
surface (Arias et al., 2021). While increased atmospheric CO2

concentration shows a relatively uniform pattern, polar regions
exhibit a two- to threefold higher warming than mid-to-low
latitudes. Changes in precipitation patterns are less well under-
stood, but are expected to be more complex, with increases at high
latitudes and in several tropical regions and decreases at mid-
latitudes. This may be accompanied by reductions in relative
humidity. Moreover, climatic variability is expected to increase,
resulting in more frequent extreme events, such as droughts, heat
waves, heavy rainfall, and wildfires. While overarching patterns
likely exist, we expect the climate response of NVP and associated
changes in ecosystem functions to differ on average between the
four broad habitat types that we have identified here (see also
Table 1). Therefore, we sort our findings accordingly into four
categories.

Open ground

Key ecosystem functions of NVP on open ground vary between
ecosystem types, leading to differential impacts of climate change.
In drylands, warming experiments suggest negative effects on cover
and diversity of biocrusts, likely due to reduced active time resulting
from drier and warmer air and also higher respiration (Maestre
et al., 2013; Ladr�on de Guevara et al., 2018; Baldauf et al., 2021),
which, however, may depend on the type of biocrust (Tucker
et al., 2019; Li et al., 2021). The negative effects of warmingmay be
exacerbated by a shift in climate variability, such as a higher number
of small rainfall events, whichmay cause high carbon losses through
maintenance respiration (Reed et al., 2012; Phillips et al., 2022).
These results are consistent with estimates of decreased biocrust
cover based on large-scale statistical modelling (Rodr�ıguez-
Caballero et al., 2018a). Cover reduction, but also a shift in species
composition, may lead to increased susceptibility of the soil surface
to erosion bywind andwater (Eldridge et al., 2020) and also enforce
a feedback between surface albedo and climate (Rutherford
et al., 2017). In addition, substantial alteration of ecosystem
nitrogen fixation and carbon sequestration may occur (current
contributions by NVP of 25% and 10% on average, respectively;
Elbert et al., 2012; Rousk & Michelsen, 2017), and also
phosphorus cycling may be affected (Concostrina-Zubiri
et al., 2022; Garc�ıa-Vel�azquez et al., 2022). Furthermore, climate
change impacts on NVP-mediated soil nutrient cycling will likely
be species-specific (Concostrina-Zubiri et al., 2021).

At high latitudes, effects of climate change onNVPmay lead to a
modulation of the positive feedback between global warming and
carbon emissions from permafrost soils through changes in the
capacity of mosses and lichens to cool the soil surface (Bernier

Tundra and polar

forest and woodlands

Fig. 2 Categorization of four habitat types
(ellipses) of nonvascular photoautotrophs
along three microclimatic gradients. The
habitat types are further subdivided along the
gradients (example ecosystem types shown in
boxes) and additionally exhibit different
degrees of climate variability (color of the
boxes denotes low tohigh variability fromblue
to red, integrating from diurnal to interannual
time scales).
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et al., 2011; Porada et al., 2016). In the Northern Hemisphere,
whether warming and changes in rainfall patterns will have an
overall positive or negative effect on NVP is not clear (Deane-Coe
et al., 2015). This is complicated by uncertainties in the response of
vascular high-latitude vegetation to climate change (Myers-Smith
et al., 2020), which will likely modulate microclimatic conditions
for NVP.

In alpine regions, and also in deserts, changes in climate may
affect epilithic and endolithic NVP, with consequences for local
weathering rates (Weber et al., 2011). At high elevations, snowmelt
will be faster and in late summer, lessmelt water will be available for
high-alpine moss and lichen communities (Scheidegger, 2021).
Little quantitative knowledge exists in this regard, but impacts on
biogeochemical cycling may be substantial, because NVP may
represent the dominant vegetation in these habitats.

Peatlands

Climate change is expected to affect the productivity of NVP in
peatlands, particularly at high latitudes. Nonvascular photoau-
totrophs contribute substantially to carbon sequestration via input
of dead biomass under anoxic conditions (Street et al., 2013;
Weston et al., 2015). This is enhanced by the release of phenolic
compounds and acids from NVP, which impede microbial
decomposition of organic matter (Dieleman et al., 2017). While
warming may extend the growing season at high latitudes, weather
extremes such as heat waves, associated with water table drawdown,
changes in rainfall patterns, and increased fire risks may have strong
negative effects on NVP (Loisel et al., 2021). Moreover, warmer
climatic conditions and increased nitrogen availability may lead to
increased cover of vascular plants, altering the microclimate for
NVP (Malmer et al., 1994). The potential changes in peatland
hydrology may substantially increase emissions of CO2, CH4, and
N2O from these ecosystems in the next decades, due to enhanced
microbial activity under oxygenated and warmer soil conditions,
particularly in permafrost regions (Hugelius et al., 2020).

As it is not completely clear which factors limit the growth of
NVP in peatlands, potential effects of climate change on NVP
remain uncertain. Several studies suggest nutrient limitation of
productivity in these ecosystems, regarding nitrogen, phosphorus,
or both (Aerts et al., 1992). This may lead to amarked reduction in

a potential CO2 fertilization effect in the future (see also ‘All habitat
types’ in the Potential impacts of climate change on key ecosystem
functions of NVP section). Furthermore, the ability of different
species of peat mosses (Sphagnum) for coping with warmer and
drier conditions needs to be better examined, in particular the role
of the organisms’ microbiome (Carrell et al., 2019).

Understory

A dense layer of NVP on the ground is not only a feature of boreal
forests, but may also occur in temperate (rain) forests (Berdugo
et al., 2018), and tropical montane cloud forests (Rodr�ıguez-Quiel
et al., 2019). A key ecosystem function of NVP in the forest
understory that will likely be affected by climate change is the biotic
fixation of nitrogen through associated microbes (DeLuca
et al., 2002), because the magnitude of this process strongly
depends on the water content and temperature of NVP (Rousk
et al., 2018). In addition to these direct effects, climate-induced
shifts in forest type, also due to changes in local fire regime, may
modifymicroclimate, including light availability, and have impacts
on NVP and biotic nitrogen fixation (Lindo et al., 2013). Other
relevant ecosystem functions governed by understory NVP that
may be affected by climate change include storage and evaporation
(up to 50%) of net rainfall (Porada et al., 2018) and input of carbon
into the soil (Street et al., 2013).

As biotic nitrogen fixation associated with NVP is spatially
heterogeneous and highly dynamic, it is challenging to assess future
changes based on current knowledge from short-term site-level
measurements (Salazar et al., 2020). Furthermore, the nature of the
relationship betweenmicrobes andNVP is not entirely clear.While
it is established that cyanolichens represent a symbiosis between a
fungus and a cyanobacterium, it is not known towhat extentmosses
benefit from the presence of nitrogen-fixingmicrobes and vice versa
(Rousk et al., 2013). Effects of altered temperature and moisture
supply due to climate change may thus also depend on the reaction
of the microbiome, and not only on the response of the plant.

Vascular plants

Climate change is expected to negatively affect epiphytic and
epiphyllic NVP, that is, growing on the bark of trees and shrubs or

Table 1 Negative impacts of climate change on main ecosystem functions and services of nonvascular photoautotrophs (NVP) per habitat type, associated
functional types of NVP, main potential impact factors of climate change, and key knowledge gaps in this regard (see text for references).

Habitat type Characteristic functional type Main climate impact factors
Ecosystem functions affected
by climate change Key knowledge gaps

Open ground Cyanobacteria, dryland/
tundra Lichens, and
bryophytes

Temperature, relative humidity,
Precipitation variability

Erosion protection, ground
cooling, nutrient cycling

CO2 fertilization, acclimation
potential, competition, symbiotic
relations

Peatland Peat moss Temperature, extreme weather Carbon sequestration Nutrient limitation, microbiome
effects

Understory Bryophyte (and lichen) carpets Temperature, rainfall variability,
light availability

Nutrient cycling, precipitation
partitioning, carbon
sequestration

Symbiotic relations, microbiome
effects, acclimation potential

Vascular plants Bryophytes and lichens Temperature, light availability,
rainfall variability

Precipitation partitioning,
temperature regulation

Community turnover, acclimation
potential, climate feedbacks
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on leaves across various forest ecosystems (Ellis, 2013). Epiphytes
have been shown to intercept substantial amounts of rainfall and
fog (Van Stan II & Pypker, 2015). The subsequent evaporation
reduces soil water availability for vascular plants and also cools the
canopy (Davies-Barnard et al., 2014). Hence, key consequences for
ecosystem functioning following the potential reduction in NVP
will likely include alterations to net precipitation below the canopy
and to energy and water balances in the canopy. Additionally,
nutrient cycling may be affected due to the substantial role of NVP
for nitrogen inputs in some forests (Clark et al., 1998), and also the
formation of canopy soils (Gotsch et al., 2016)may be affectedwith
consequences for other canopy organisms such as vascular
epiphytes and invertebrates.

While some species may benefit from warmer conditions, many
studies suggest negative consequences of climate change for
epiphytic NVP, in particular in case of more frequent extreme
drying events (Nascimbene et al., 2016; Smith et al., 2018).
Warming anddryingmay reduce active time and/or cause increased
respiration costs, but also warming accompanied by prolonged
water saturation may lead to higher respiration (Ellis, 2019a;
Metcalfe & Ahlstrand, 2019).

Major uncertainties exist regarding the extent to which the
function of NVP could be stabilized by community turnover in
response to reduced availability of water or shifts in the water
source, such as rainfall, dew, or fog (Rubio-Salcedo et al., 2017). If
these changes in community composition reduced the average
water storage capacity of the organisms or their water uptake
efficiency (Hovind et al., 2020), thismay lead to a positive feedback
on increased canopy temperature, due to decreased evaporative
cooling. A further complicating factor is the additional impact of
changed abundance of host tree species on the community
composition of epiphytic NVP. Thereby, host tree specificity not
only depends on microclimate associated with a certain tree species
but also on nonclimatic factors, such as bark structure and
chemistry (Nascimbene et al., 2020).

All habitat types

It is likely that NVP will show a dynamic response to warmer
conditions and altered rainfall frequency and amount (Di Nuzzo
et al., 2021). However, the possible extent of this response is largely
unknown, for several reasons: First, it is poorly known which
factors determine the large observed differences between species of
NVP in their potential for acclimation to warming (Colesie
et al., 2018). Observations from the Antarctic suggest that
generalist species may be able to cope with substantially warmer
conditions, while many specialist, often endemic, species may not
(Sancho et al., 2017, 2020).However, howhabitat conditions drive
this physiological specialization is unclear (Colesie et al., 2014).
Second, whether elevated atmospheric CO2 concentration will
have a relevant positive effect on the productivity ofNVP is unclear
(Coe et al., 2012). Contrary to vascular plants, CO2 limitation of
NVP generally occurs under high water saturation, caused by
reduced CO2 diffusivity. As climate change will likely lead to more
frequent dry conditions, when NVP are not CO2-limited, the
reduced active time may outweigh the potential benefits of CO2

fertilization. At the forest floor, but also in peatlands and in certain
tundra habitats, ambient CO2 for NVP may be uncoupled from
CO2 concentration in the air (Tarnawski et al., 1994), which
represents additional uncertainty regarding the CO2 response.

Research outlook

Our categorization scheme for habitat types of NVP (Fig. 2) shows
that the organisms are able to survive under a large range of climatic
conditions. Individual species, however, often seem to be special-
ized to a specific combination of microclimatic factors, including
the pattern of climatic variability (see ‘Open ground’, ‘Peatlands’,
‘Understory’, and ‘Vascular plants’ in the Potential impacts of
climate change on key ecosystem functions of NVP section). In
general, the literature suggests that many species of NVP will be
locally threatened if the characteristics of their habitats are
substantially altered due to climate change (Table 1). Acclimation
to seasonal variation of temperature is common, for instance
(Lange & Green, 2005), but weather extremes may surpass the
organisms’ ability to acclimate (Maier et al., 2018). While the
climatic impact factors are largely consistent between different
habitat types, the main ecosystem functions performed by NVP
seem to be more habitat-specific. Thus, it is likely that the effects of
climate change onNVPwill affect a considerable range of different
ecosystem functions around the world.

While the general direction of climate effects on NVP is
relatively well constrained, quantitative estimates on their extent
are highly uncertain. This is mainly due to knowledge gaps on
several key overarchingmechanisms, which determine the ability of
the organisms for dynamic response: (1) acclimation to increased
temperatures and altered hydrological conditions; (2) response to
increased ambient CO2; (3) role of (symbiotic) microbes; and (4)
complex feedbacks between climatic factors, biophysical surface
properties (e.g. albedo), and ecophysiological responses of NVP.
While the relative importance of these poorly known response
processes differs between habitat types, they all contribute
substantially to the overall large uncertainty.

The dynamic response of NVP to climate change may occur not
only at the individual level through phenotypic plasticity, but also
at the population level through selection and adaptation to
environmental change, and at the ecosystem level via shifts in
community composition (Di Nuzzo et al., 2021). To what extent
ecosystem functions depend on the specific composition of
nonvascular communities and how they will be affected by
potential community turnover in the future is largely unclear.

To advance our understanding of NVP under changing climate,
we suggest a threefold approach, which includes: (1) new or
extended field and laboratory experiments and measurement
techniques; (2) further development of modelling approaches;
and (3) integration of models and data across scales.

Experiments and measurements

Current studies suggest a species-specific ability of NVP to
acclimate to changed climatic conditions (Wagner et al., 2014).
Multispecies experiments that cover a large range of habitats and
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manipulate several climatic factors may thus provide essential
insights into the mechanisms which enable certain species to
acclimate more efficiently than others. The uncertain long-term
response of NVP to elevated CO2 may be addressed by multifac-
torial fertilization experiments, which include potential nutrient
limitation of growth (Aerts et al., 1992). This would be comple-
mented by free-air CO2 enrichment (FACE) experiments, which,
until now, have seldom covered ecosystems dominated by NVP
(Norby et al., 2019).

Innovative measurement techniques will provide more detailed
information on ecophysiological processes of NVP and their
interactions with the environment, such as new sensors for
determining biocrust wetness (Weber et al., 2016), isotopic and
automated gas exchange (B€udel et al., 2018), and 3D analysis of
surfaces of NVP (Caster et al., 2021). Moreover, molecular
approaches, such as metagenomics and metaproteomics, can help
to characterize the (symbiotic) microbial community associated
with NVP and understand their effects on NVP metabolism and
functioning (Weston et al., 2015; Torres-Ben�ıtez et al., 2017;
Maier et al., 2018; Grimm et al., 2021).

Further insights may be gained from (long-term) observation of
relations between climate and nonvascular activity (and carbon
balance) along spatial gradients through remote sensing that is
calibrated to ground-based measurements (Rieser et al., 2021). In
addition, increasing the knowledge of species’ spatial distributions,
which is still poor, even for many large and common lichens
(Stanton & Coe, 2021), may improve the recognition of the
climatic ranges that nonvascular organisms are able to cope with
and may also move forward taxonomy (Martellos et al., 2014).

Modelling

Species distribution models (SDMs) have been used in recent
decades to predict the occurrence of NVP, often based on
bioclimatic envelopes (Giordani & Incerti, 2008), and assess the
potential consequences of climate change on the abundance of
nonvascular species (Nascimbene et al., 2016). Extending this to
trait-based approaches may allow for a more generalized way across
taxa to assess not only how environmental factors shape traits of
NVP, but also how traits of NVP affect ecosystem functions
(Giordani et al., 2014; Ellis et al., 2021). Thereby, including the
evolutionary history of species may help to constrain model
predictions (Nelsen et al., 2022). To advance the SDM approach
further, it has been suggested to account for nonclimatic factors,
such as habitat quality, and to include schemes for the represen-
tation of population processes, such as adaptation or migration
(Ellis, 2019b).

Process-based dynamic vegetation models (DVMs) which focus
onNVP are rare so far (Porada et al., 2013; Launiainen et al., 2015;
Kim&Or, 2017). The main difference between the DVM and the
SDM approach is that the transient response of organisms to
(changing) climate is explicitly simulated inDVMs, so to assume an
equilibrium with the environment is not required. Dynamic
vegetation models are therefore often integrated in Earth System
Models. Dynamic vegetation models of NVP compute physiolog-
ical processes, such as photosynthesis or growth, in a mechanistic

way, thereby considering either parts of themetabolism (N.Nikoli�c
et al., unpublished) or entire individuals (Porada et al., 2013;
Baldauf et al., 2021). Simple nonvascular functional types have
been included in several land surface models (e.g. Porada
et al., 2016; Park et al., 2018; Druel et al., 2019). Explicit
simulation of physiological and morphological traits of NVP and
their distributions in diverse nonvascular communities makes it
possible to assess the role of community composition for ecosystem
function, but is only considered by few models (Porada
et al., 2013). As for SDMs, a more detailed representation of
population processes may improve DVM projections of climate
change impacts on NVP. A key knowledge gap that may be
addressed by process models is the role of complex feedbacks
between NVP and climate, but this is complicated by uncertainty
regarding the relevance of indirect effects of climate change on
NVP, such as vascular plant dynamics or disturbance.

Model–data integration

While further developments of real-world experiments and
modelling often take place rather independently from each other,
we suggest that an integrated approach will substantially advance
our understanding of the climate response of NVP. To allow for
improved quantitative predictions on NVP-climate feedbacks,
models need to account for the relevant functional traits regarding
both the response of NVP to climate (change) and the effects of the
organisms on climate (Ellis et al., 2021). In addition, traits that are
linked to other ecosystem functions will be affected by climate
change, such as alteration of (soil) nutrient cycling or food webs
(Cornelissen et al., 2007; Concostrina-Zubiri et al., 2021), and
need to be included in modelling approaches, too. Thereby, the
large observed variation in possible trait values (Mallen-Cooper &
Eldridge, 2016) should be considered. While this use of functional
traits is crucial for model advancement, the availability of
observational data in this regard needs to be markedly improved.
Global databases of plant traits, such as TRY (Kattge et al., 2011),
cover a relatively small fraction of the expected diversity in
functional traits of NVP. Hence, a collective effort of the research
community would enhance connections to already existing data
andmay lead to new insights on trait–environment relationships in
NVP (Deane-Coe & Stanton, 2017; Mallen-Cooper et al., 2020).

Furthermore, an improved understanding of physiological and
ecological mechanisms of NVP is the key to enhancing the
predictive power of models aiming at estimating the effects of NVP
on biogeochemical processes. In particular, hypotheses on mech-
anisms behind acclimation and CO2 fertilization, or the role of
microbes, need to be implemented into models and then tested
against observations from warming or CO2 enrichment experi-
ments. Thereby, it is crucial that physiological and ecological
processes in models account for trade-offs between traits, because
these may constrain the potential of NVP for dynamic response to
changing climate. Increased photosynthetic capacity, for instance,
results in increasedmaintenance respiration rate due to the required
metabolic investment in enzyme pools and other structures
(Bengtsson et al., 2016; Wang et al., 2017a). If the supply of
water, light, and CO2 is not sufficient to meet photosynthetic
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capacity, this may have an overall negative impact on the carbon
balance of NVP (Wang et al., 2017b).

Regarding potential shifts in nonvascular community compo-
sition, we suggest that the carbon balance of the organisms may
serve as a good approximation for their relative ecological success,
because (1) any photoautotroph needs to achieve positive net
primary production (NPP) for survival in the long term; and (2)
carbon from NPP may be invested in various physiological
processes and biotic interactions, which determine intra and
interspecific competitive strength. Furthermore, the carbon bal-
ance is applicable from the level of an individual organism to the
ecosystem.Quantifying the effects of climatic factors on the carbon
balance both through observations and modelling may thus enable
prediction of the realized response of nonvascular communities
under climate change. Thereby, it may not always be necessary to
directly measure carbon fluxes in the field, but sufficiently long-
term estimates of biomass and coverage from remote sensing
(Smith et al., 2015; Rodr�ıguez-Caballero et al., 2017; Erlandsson
et al., 2022)may also be used as a proxy for the accumulated carbon
balance.

The broad scope and low resolution of our approach results in
several limitations, which, however, may be addressed by future
works. So far, we do not explicitly account for indirect or
nonclimatic effects on NVP, such as human impacts, or conse-
quences of climate change for other ecosystem components.
Altered herbivory or disturbance frequency, for instance, may
substantiallymodify various relations betweenNVP and ecosystem
functions. This may be studied by modelling approaches, which
include key ecosystem feedback mechanisms, but which still need
to be developed.

Conclusion

According to our analysis, expected impacts of climate change on
ecosystem functions and services of NVP will be negative in the
majority of cases, meaning that the extent of associated functions
will be reduced inmany ecosystems. This includes protection of the
soil structure against various environmental factors, nutrient input
and carbon sequestration, and also climate regulation from the local
to the global scale. Themain climatic factors that affectNVP in this
regard are increased ambient temperature (and, in some cases,
decreased humidity), altered rainfall patterns, and more frequent
weather extremes. Negative effects may mainly result from shorter
active time, causing reduced net growth, and increased respiration
costs, depending on the timing of increased temperature and
changes in the pattern of hydration events. New research
approaches will be required to quantitatively assess the extent of
these impacts.

Thepotential loss of ecosystem functions implies thatNVPshould
be included in the development of sustainable land management
scenarios, therebybenefiting fromresearch investment. Furthermore,
research in the area of nature conservation should account for the
functional role of NVP in ecosystems and may benefit from the
addition of a stronger physiological perspective. Finally, consistent
integration of NVP into Earth System Models may enable more
accurate projections of future vegetation–climate feedbacks. To

summarize, we highlight the avenues of new research, with a focus on
functional traits and ecophysiological processes and trade-offs, to
achieve an improved understanding of the future role of NVP in
global ecosystem functioning.
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