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Abstract
Lichens are one of the most responsive components of the ecosystem to reactive forms of nitrogen. In this work, we selected 
the lichen genera Cladonia and Usnea, composed of terricolous and epiphytic lichens respectively, and described as sensitive 
to nitrogen, to test the effects of different doses of nitrogen on lichen physiological parameters (photobiont and mycobiont 
vitality, chitin quantification, nitrogen content and stable isotopes analysis). The main objectives were to check if the activa-
tion of protective mechanisms could be stimulated in case of chronic stress (low nitrogen increase for prolonged time), and, 
if so, if a toxicity threshold could be identified above which these mechanisms fail. The two lichen genera were generally 
affected by prolonged exposure to increased nitrogen availability. However, Cladonia rangiformis was able to maintain 
physiological functioning at the lowest nitrogen doses used, whereas thalli of Usnea become overwhelmed. Moreover, the 
mycobiont appeared to be more sensitive than the photobiont responding to lower nitrogen doses. Although only studies of 
longer duration and testing more nitrogen doses will be able to determine an accurate toxicity threshold, these results give 
important clues on the use of lichens as biomonitors for the establishment of environmental policies.
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Introduction

Among ecological indicators, lichens feature extensively. Their 
morphological characteristics and their complete dependence 
on the atmosphere to provide their moisture and nutrients make 
them very sensitive and thus rapid responders to environmen-
tal change related to the climate or to atmospheric pollutants 
(Nimis et al. 2000; Conti and Cecchetti 2001; Jovan 2008).

This feature has been exploited since the XIX century for 
biomonitoring purposes and today a huge body of literature 
is available detailing the use of lichens as indicators.

Traditionally, qualitative or quantitative observations of 
community composition and changes were used to evaluate 
environmental quality. However, with a diversity of more 
than 17000 species of lichens existing on Earth (Lumbsch 
et al. 2011), looking uncritically to species frequency can 
be easily considered an oversimplification. Over recent dec-
ades an approach based on functional traits, both morpho-
anatomical attributes like growth form, photobiont type, 
and reproductive strategy (e.g. Nelson et al. 2015; Benítez 
et al. 2018; Koch et al. 2019), and physiological attributes 
like vitality indexes, photosynthetic performance, water use 
strategy and nutrient management (e.g. Paoli et al. 2011; 
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Gauslaa 2014; Sujetovienė et al. 2019) has provided a more 
precise methodology to evaluate the effects of environmental 
factors on lichens.

Following this approach, lichens can be allocated to 
“functional groups” characterized by a similar response to 
abiotic factors like pH, solar irradiation, aridity, and eutroph-
ication among others (Nimis and Martellos 2022).

In particular, lichen response to nitrogen has received much 
attention due to the increasing relevance of reactive forms of 
nitrogen as major atmospheric pollutants. Indeed, nitrogen 
is a fundamental requirement for living beings but its excess 
results toxic for the ecosystem (Steffen et al. 2015). Lichens, 
considered one of the most responsive components of the 
ecosystem to reactive forms of nitrogen (Hauck 2010; Jovan 
et al. 2012), are not only widely used as ecological indica-
tors for nitrogen pollution (Leith et al. 2005), but also form 
the backbone of the empirical observations used to establish 
environmental policies like the nitrogen Critical Loads and 
Critical Levels (Fenn et al. 2008; Cape et al. 2009).

However, not all lichens respond in the same way to 
nitrogen. Oligotrophic lichen species are highly sensitive 
and tend to disappear even with slight increases in nitrogen 
availability in the environment, whereas nitrophytic lichens 
tolerate high levels of nitrogen (e.g. Munzi et al. 2014; 
Nimis and Martellos 2022). Various species of Cladonia, for 
example, considered highly sensitive to nitrogen, have been 
used in the development of environmental policies aimed 
at protecting vulnerable environments, such as bogs (APIS, 
2019). In this work, we selected the lichen genera Cladonia 
and Usnea, composed of terricolous and epiphytic lichens 
respectively to test the effects of different doses of nitrogen 
on lichen physiological parameters. While the well-known 
sensitivity of Usnea species makes them reliable indicators 
of undisturbed environments, recent studies have questioned 

the suitability of a Cladonia species, namely C. portentosa, 
as a reference for nitrogen deposition limits in the atmos-
phere due to its ability to cope with significant nitrogen 
availability (Munzi et al. 2020). In light of these findings, we 
conducted an experiment using C. rangiformis, a widespread 
species in Mediterranean environment, to test its sensitivity 
to increased levels of nitrogen.

The main objectives of this work were: i) to check if the 
activation of protective mechanisms could be stimulated in 
case of short-term treatment with nitrogen concentrations 
simulating those leading to chronic effects in sensitive spe-
cies; ii) to identify a toxicity threshold above which these 
mechanisms fail; and iii) to contribute to the knowledge 
about species-specific response in the genus Cladonia com-
paring C. rangiformis with sensitive Usnea species. We 
expect one of two scenarios: that both species are strictly 
sensitive, in which case no protective mechanisms will 
be activated, or that C. rangiformis, like C. portentosa, is 
less sensitive than believed so far and that its physiological 
parameters will stay or will return to control values when the 
protective mechanisms are activated in response to nitrogen 
stress.

The results can have consequences in the use of the stud-
ied lichens in the establishment of environmental policies in 
the Mediterranean environment.

Material and methods

Lichen material

Thalli of Cladonia rangiformis and Usnea sp. (Fig. 1) were 
collected in late winter (2016) respectively on soil and on 
bark of Quercus suber at Companhia das Lezírias (Samora 

Fig. 1   Thalli of Usnea spp. (on 
the left) and Cladonia rangi-
formis (on the right) collected in 
a Mediterranean cork oak forest
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Correia, Portugal), a public limited liability company and 
Portugal’s largest agricultural and forestry exploitation. The 
sampling site is a Mediterranean cork-oak forest (519175 E; 
4299714 N), in an area where pristine conditions have been 
maintained for decades thanks to the exclusion of grazing 
and agricultural activities from the site. Lichen material was 
transported to the laboratory in paper bags, roughly cleaned 
from impurity without damaging the thalli, and kept at room 
temperature following the natural day/night cycle for one 

day. Nomenclature was based on the online keys published 
in ITALIC (Nimis and Martellos 2022).

Thalli were then divided into 4 batches of 10 thalli each, 
and kept at room temperature in the laboratory, exposed 
to natural light. Each batch was sprayed until completely 
hydrated every day for 9 weeks, either with water (control) 
or 50, 150 and 500 μM NH4Cl solutions. Nitrogen doses 
were chosen to simulate ecologically relevant concentrations 
following Munzi et al. (2012). At various intervals during 

Fig. 2   Fv/Fm values (% of the 
control, mean value, n = 5) 
in Cladonia rangiformis and 
Usnea sp. Squares = 50 μM 
NH4Cl; diamonds = 150 μM 
NH4Cl; triangles = 500 μM 
NH4Cl. Vertical bars represent 
standard deviation

Fig. 3   Viability of the mycobiont as indicated by TTC reduction: Values of absorbance at 492 nm (% of the control) in Cladonia rangiformis and 
Usnea sp. Squares = 50 μM NH4Cl; diamonds = 150 μM NH4Cl; triangles = 500 μM NH4Cl
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the experiment, as indicated in Figs. 2, 3, 4 and 5, part of the 
material was collected and underwent a set of physiological 
analyses. Another part was dried at 60 °C and used to meas-
ure the percentage of water in lichen material to calculate the 
dry weight (DW). Material from C. rangiformis was more 
abundant allowing for an extra set of destructive analyses.

Chlorophyll a fluorescence

Measurements of chlorophyll a fluorescence emission were 
taken for all lichen samples, 5 replicates per species, as a 
marker of lichen vitality. In particular, the physiological 
indicator of photosynthetic efficiency Fv/Fm was consid-
ered, representing the potential quantum yield of primary 
photochemistry (Maxwell and Johnson 2000). Fv/Fm is a 
widely used parameter measured in photosynthetic organ-
isms and has been successfully applied to lichens (e.g. 
Munzi et al. 2014; Wu et al. 2017; Wang et al. 2019).

Measurements were taken in hydrated samples dark-
adapted for 10 minutes and then illuminated for 1 s with 

a saturating 3000 µmol m−2 s−1 light pulse, at room tem-
perature, using the Plant Efficiency Analyzer Handy PEA 
(Hansatech Instruments).

Mycobiont viability

Triphenyltetrazolium chloride (TTC) reduction to triphenyl-
formazan (TPF) was used to assess the mycobiont viability 
(Bačkor and Fahselt 2005). This quantitative method was devel-
oped to evaluate the physiological condition of intact lichens 
and cultured symbionts since stressors significantly reduce the 
capability to produce formazan (Bačkor et al. 2003, 2006).

Approximately 15 mg of lichen material was incubated 
in the dark for 20 h (room temperature) in 2 mL of 5 mM 
HEPES buffer solution, 0.6% TTC and 0.005% Triton X 
100 (one drop). Samples were then removed and rinsed in 
distilled water until bubbles of Triton X were produced.

Water-insoluble formazan was extracted with 6 mL of 
ethanol at 65 °C for 45 min. The supernatant ethanol fraction 
was carefully collected, and the absorbance read at 492 nm. 

Fig. 4   Chitin content (% of control) in Cladonia rangiformis and Usnea sp. Squares = 50  μM NH4Cl; diamonds = 150  μM NH4Cl; trian-
gles = 500 μM NH4Cl (T0 value is 4.17 mg g−1 for Cladonia and 6.73 mg g−1 for Usnea)

Fig. 5   Correlation (Pearson r) 
between nitrogen content and 
nitrogen isotopic signature in 
treated thalli of Cladonia rangi-
formis and Usnea sp. Dashed 
and dotted lines on the left 
represent the correlation before 
and after the threshold value of 
1.8% DW
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Results were expressed as absorbance units g−1 (DW). Sam-
ples were analyzed in triplicate.

Chitin quantification

One of the mechanisms suggested for lichens to neutralize 
the harmful effects of nitrogen excess is to store the nitro-
gen in a non-toxic form (Munzi et al. 2017a). Chitin is a 
major constituent of fungal cell walls and nitrogen makes up 
around 6.3% of its mass (Dahlman et al. 2003).

Chitin was quantified using a method adapted from 
Dahlman et al. (2002). Prior to extraction, the samples of 
10–25 mg pulverized, freeze-dried lichen (the youngest part 
of the thalli, up to the first two cm of the ramifications) were 
suspended in 1 mL 0.2 M NaOH then incubated on a rotary 
agitator at room temperature for 6 h; after centrifugation at 
maximum speed for 15 min, another 1 mL 0.2 M NaOH was 
added to the pellet before incubation overnight at 100 °C to 
remove amino acids and proteins. After centrifugation (max. 
Speed, 15 min), the pellet was suspended in 1 mL 6 M HCl 
and incubated at 100 °C for 5 h to hydrolyze the chitin; after 
cooling to room temperature and centrifuging (max. Speed, 
15 min), the supernatant, containing any glucosamine, was 
collected in a new Eppendorf vial, then evaporated under a 
vacuum. Two hundred microliters of water (Milli-Q), 250 μL 
FMOC-Cl (15 mM in acetone) derivation reagent, and 50 μL 
borate buffer (1 M, pH 6.3) were added to the extract. After 
mild agitation and incubation for 10 min, excess FMOC-Cl 
was removed by two-phase partitioning with 1 mL heptane, 
repeated twice, and the samples were injected into the HPLC 
within 10 min. HPLC-UV analysis was performed with a Shi-
madzu (Japan) LC-6A pump and a Shimadzu (Japan) SPD-
6AV UV-Vis detector; data were recorded and analyzed using 
generic signal recorder software (Azur, Datalys, France); sep-
aration was achieved with a Merck LiChroCART 250–4.6 mm 
Purospher STAR reversed-phase 18e (5 μM) column kept at 
25 °C. The mobile phase was 100% methanol (SIGMA) at a 
flow rate of 1.4 mL min−1, and detection was performed at the 
wavelength of maximum absorbance (242 nm), determined by 
spectrophotometric essays on standard solutions or glucosa-
mine (SIGMA). The injection volume was 20 μL. Samples 
were analyzed in triplicate.

Chitin was quantified through external calibration, using 
standard solutions of glucosamine (SIGMA) in water, which 
was derived as the sample (six levels, encompassing sample 
chromatographic response range, R2 = 0.9935).

Nitrogen content and stable isotopes analysis

Stable isotope ratio analysis was performed at the Centro de 
Recursos em Isótopos Estáveis - Stable Isotopes and Instru-
mental Analysis Facility, at the Faculdade de Ciências, Uni-
versidade de Lisboa, Portugal. δ13C and δ15N in the samples 
were determined by continuous flow isotope mass spectrom-
etry (CF-IRMS) (Preston and Owens 1983), on a Sercon 
Hydra 20–22 (Sercon, UK) stable isotope ratio mass spec-
trometer, coupled to a EuroEA (EuroVector, Italy) elemental 
analyser for online sample preparation by Dumas-combustion. 
Delta Calculation was performed according to δ = [(Rsample 
– Rstandard)/Rstandard]*1000, where R is the ratio between 
the heavier isotope and the lighter one. δ15NAir values are 
referred to air and δ13CVPDB values are referred to PDB (Pee 
Dee Belemnite). The reference materials used were USGS-25, 
USGS-35, BCR-657 and IAEA-CH7 (Coleman and Meier-
Augenstein 2014); the laboratory standard used was Wheat 
Flour Standard OAS/Isotope (Elemental Microanalysis, UK). 
Uncertainty of the isotope ratio analysis, calculated using val-
ues from 6 to 9 replicates of laboratory standard interspersed 
among samples in every batch analysis, was ≤ 0.1‰. The 
major mass signals of nitrogen and carbon were used to calcu-
late total nitrogen and carbon abundances, using Wheat Flour 
Standard OAS (Elemental Microanalysis, UK, with 1.47%N, 
39.53%C) as elemental composition reference materials. 
Nitrogen isotopic signature of chemical used for treatments 
was NH4Cl − 2.9‰ vAir ± 0.04‰ Three replicates per treat-
ment per species were analysed at each collection time.

Results

Nitrogen uptake in lichen thalli of both species was confirmed 
by the nitrogen concentration measured in lichen material 
(Table 1). As expected, nitrogen concentrations increased with 
duration of exposure and the nitrogen dose provided. Inter-
estingly, the final nitrogen concentrations in the two species 

Table 1   Nitrogen concentration 
in lichen tissue (% of dry 
weight) after 0, 14, 28 and 
65 days of treatment

There was insufficient Usnea material to perform destructive analysis on day 28

Cladonia rangiformis Usnea sp.

0 14 28 65 0 14 65

control 0.6 0.6 0.5 0.5 1.1 0.8 1.3
50 0.6 0.6 1.1 1.7 1.1 1.1 1.8
150 0.6 0.6 1.4 3.5 1.1 0.9 3.5
500 0.6 3.4 2.8 5.8 1.1 1.4 5.5
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were similar for the same nitrogen treatments, but the initial 
value was lower in C. rangiformis, suggesting a slightly higher 
uptake rate in this species.

Figure 2 shows the results of chlorophyll a fluorescence 
measurement for C. rangiformis and Usnea sp. along the 
9 weeks of the experiment.

Samples of C. rangiformis showed values similar to the 
control (> 80% of control) up to day 14 but by the 24th day, the 
150 and 500 μM solutions had started affecting lichen health. 
Dose-related responses were clear after about three weeks: 
Overall, the lowest dose of treatment (50 μM) tended to stimu-
late the Fv/Fm parameter by comparison with the control. The 
150 μM solution caused a marked decrease in the fluorescence 
parameter, followed by an increase up to around 80% of the 
control. The highest dose (500 μM) caused a progressive phys-
iological impairment leading to almost complete inhibition of 
the photosynthetic system.

In the case of Usnea sp., for all nitrogen doses, an initial 
slight enhancement was followed by a constant decrease of 
the Fv/Fm value after day 28. The level of reduction increased 
with the nitrogen dose/concentration.

Regarding the viability of the mycobiont, as expected, the 
concentration of TTC remained more or less constant in the 
control thalli of both species. However, both species displayed 
an initial increase followed by a decrease in TTC concentra-
tion, regardless of the dose of the treatment applied (Fig. 3).

Figure 4 shows how the chitin content varied in treated 
samples along the treatment period (T0 value is 4.17 mg g−1 
for Cladonia and 6.73 mg g−1 for Usnea).

Nitrogen isotopic signature in the samples analyzed tended 
toward the δ15N of the chemical used for the treatment (−2.9‰) 
(Fig. 3), with Cladonia changing from −6.34‰ to −3.95‰ and 
Usnea from −12.8‰ to −4.57‰. Once again, the two species 
behaved differently. Usnea showed a constant linear relation-
ship along the entire treatment period between its’ nitrogen con-
centration (showing nitrogen uptake) and the nitrogen isotopic 
signature (showing nitrogen turnover in the tissue). Conversely, 
Cladonia went through two phases: the first one, below the 
threshold value of 1.8% DW, characterized by a rapid nitrogen 
turnover of nitrogen molecules in the lichen tissue implying an 
intense metabolic activity, and the second one, above the thresh-
old value of 1.8% DW, where the turnover almost plateaued. 
Notably, a plateau is reached for the isotopic signature, but not 
for nitrogen uptake (Table 1; Fig. 5).

Discussion

Atmospheric nutrients, like air-borne nitrogen, are essential for 
lichens in unpolluted environments (Hauck 2010). An increased 
nitrogen availability, below the toxicity threshold, can there-
fore help overcome nutrient limitations, especially for relatively 
fast-growing lichens, in nutrient-poor sites (Crittenden et al. 

1994). The slight, initial increase of Fv/Fm observed in all 
samples can thus be interpreted as a fertilizing effect, in agree-
ment with previous findings (Carreras et al. 1998; Munzi et al. 
2013). However, this beneficial effect was replaced by harmful 
consequences with the prolonged duration of the experiment 
and the enhanced amount of nitrogen provided.

Although both considered sensitive, the two species 
showed some difference in their response to the same 
amount of nitrogen in their tissue (Table 1), with Usnea sp. 
being affected by all treatments and C. rangiformis recover-
ing after being treated for some time with the two lowest 
nitrogen doses. A similar situation was observed in samples 
of Xanthoria parietina collected from a remote site when 
compared with samples of the same species collected from a 
site with high nitrogen availability (Munzi et al. 2013): thalli 
from the clean site showed impairment while the others were 
able to recover after exposure to 250 mM (NH4)2SO4. The 
authors believed the induction of nitrogen tolerance mecha-
nisms during prolonged exposure might explain the differ-
ence between the two groups of samples. A recent study 
on proteomic analysis in Cladonia portentosa reported 
changes in the protein expression compatible with mecha-
nisms of nitrogen tolerance in samples exposed for more 
than 10 years to nitrogen manipulation (Munzi et al. 2017b). 
This suggests that even sensitive species of Cladonia can 
develop mechanisms to cope with nitrogen stress.

The production of TPF serves as an indicator of metabolic 
activity and is commonly observed to decline under stress 
conditions. The observed initial increase in dehydrogenase 
activity in our samples treated with different concentrations 
of N may be attributed to the activation of molecular mecha-
nisms, such as chitin production, resulting from increased N 
availability. This finding is in line with the previously dis-
cussed fertilizing effect of nitrogen. However, the subsequent 
decrease in TPF levels suggests that the toxicity threshold of 
nitrogen has been exceeded, leading to an adverse impact on 
the metabolic activity in both species studied.

Chitin production can be seen as a means of neutralizing 
nitrogen excess. This nitrogen-containing polymer is in fact 
a main constituent of the fungal cell walls and its production 
was found to be proportional to the nitrogen available in the 
environment in lichens and other fungi (Crittenden et al. 1994; 
Palmqvist et al. 2002). Chitin was found to be associated not 
only with nitrogen availability, but also with nitrogen tolerance 
in lichens (Munzi et al. 2017a). Results from Cladonia high-
light an increase in chitin content in all treated samples, with 
similar final content. That suggests that the amount of nitrogen 
provided already at the lowest dose was enough to saturate the 
metabolic pathways for chitin production. In Usnea, samples 
treated with 50 μM increased chitin content reaching a stable 
value already after two weeks. For 150 and 500 μM the pattern 
is not so clear, with chitin content lowering or increasing and 
then lowering. A possible explanation is that with the highest 
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doses of nitrogen, very soon Usnea started suffering a physi-
ological impairment due to nitrogen excess that prevented a 
clear metabolic response. Therefore, nitrogen storage as chitin 
seems to be a more effective process in Cladonia than in Usnea.

It has been shown that lichen δ15N varies according to the 
isotopic signature of the nitrogen source (Munzi et al. 2019). 
This is confirmed in this study, where the isotopic signature 
of the chemical used drove the initial lichen isotopic sig-
natures towards less negative values. Possibly, the limited 
duration of the experiment prevented the nitrogen isotopic 
signature reaching that of the treatment chemical.

A metabolic shift could be compatible with the activation 
of protection mechanisms in thalli of Cladonia in response 
to a prolonged exposure to increased nitrogen availability. 
Changes in metabolic pathways in response to nitrogen have 
been described in thalli of C. portentosa, another species 
considered nitrogen sensitive. In particular, relevant changes 
in protein expression, affecting transport and regulation of 
proteins and the energetic metabolism, were observed in the 
fungal partner after long-term exposure to NH4

+ (Munzi 
et al. 2017b). In our experiments, the shift occurred when 
the nitrogen concentration in Cladonia tissue reached the 
value of 1.8% DW. However, more studies are needed before 
considering it as a general threshold.

The potential ability of lichens of the genus Cladonia to 
cope with increased nitrogen availability, shown in a recent 
work by Munzi et al. (2020), through the induction of protec-
tion mechanisms would explain the presence of these sup-
posed nitrogen sensitive lichens in polluted areas (Gheza 
2015, 2018). On the other hand, the lack of such mechanisms 
in Usnea confirms and justifies its acknowledged sensitivity 
to nitrogen.

Conclusions

Physiological tests performed on species of Cladonia and 
Usnea confirmed that these two lichen genera are generally 
affected by prolonged exposure to increased nitrogen avail-
ability. However, although both included in the functional 
group of oligotrophic lichens, they responded differently to 
nitrogen exposure. Our results seem to point at a certain 
acclimation capacity in Cladonia species when exposed to 
continuous and gradual increases in nitrogen availability: 
after an initial impact, changes in metabolism occur that 
enable Cladonia to maintain physiological functioning at 
the lowest doses used, whereas thalli of Usnea become over-
whelmed. The hypothesis of a higher tolerance in Cladonia 
than in Usnea is supported by ecological data, namely the 
presence of Cladonia and the absence of Usnea in relatively 
polluted areas.

The photobiont’s response seems to start being affected 
between 150 and 500 μM, while the mycobiont appears to 

be more sensitive responding between 50 and 150 μM. How-
ever, only studies of longer duration and testing more nitrogen 
doses will be able to determine an accurate toxicity threshold.
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