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Keystone mutualisms, such as corals, lichens or mycorrhizae, sustain funda-
mental ecosystem functions. Range dynamics of these symbioses are,
however, inherently difficult to predict because host species may switch
between different symbiont partners in different environments, thereby alter-
ing the range of the mutualism as a functional unit. Biogeographic models of
mutualisms thus have to consider both the ecological amplitudes of various
symbiont partners and the abiotic conditions that trigger symbiont replace-
ment. To address this challenge, we here investigate ‘symbiont turnover
zones’––defined as demarcated regions where symbiont replacement is most
likely to occur, as indicated by overlapping abundances of symbiont ecotypes.
Mapping the distribution of algal symbionts from two species of lichen-
forming fungi along four independent altitudinal gradients, we detected an
abrupt and consistent β-diversity turnover suggesting parallel niche partition-
ing. Modelling contrasting environmental response functions obtained from
latitudinal distributions of algal ecotypes consistently predicted a confined
altitudinal turnover zone. In all gradients this symbiont turnover zone is
characterized by approximately 12°C average annual temperature and
approximately 5°C mean temperature of the coldest quarter, marking the tran-
sition from Mediterranean to cool temperate bioregions. Integrating the
conditions of symbiont turnover into biogeographic models of mutualisms
is an important step towards a comprehensive understanding of biodiversity
dynamics under ongoing environmental change.
1. Introduction
The distributional range of a mutualistic symbiosis is largely determined by the
ecological amplitudes of its interacting species. Scarcity of suitable interaction
partners can restrict the potential niche of a symbiosis [1–3], whereas the acqui-
sition and replacement of symbionts adapted to different environmental
conditions can broaden the niche of a host taxon [4–8]. Such mutualist-mediated
niche dynamics are particularly evident along environmental gradients where the
distribution of genetic diversity in host–symbiont combinations can closely corre-
spond to transitions between distinct abiotic conditions. Prominent examples of
these spatially structured interactions between a host and its symbionts include
the light-dependent zonation of dinoflagellate symbionts associated with coral
hosts along marine depth gradients [9–12], the replacement of mycorrhizal
fungi along soil nitrogen gradients [13–15] and the turnover of genetic lineages
of green algal symbionts associated with lichen-forming fungi along altitudinal
and latitudinal gradients [16–18]. Notably, such spatial genetic structuring in
mutualist-mediated niches also implies the presence of demarcated transition
zones where symbiont replacement is most likely to occur (figure 1). These ‘sym-
biont turnover zones’ are an integral, but hitherto unspecified, part of the
mutualistic niche concept [5,19,20], where they depict the distributional boundaries
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Figure 1. The mutualistic niche space of a symbiotic host can be subdivided into separate sections, each of which depends on the presence of particular symbionts
(1 and 2) with distinct performance optima along the respective niche axes (i.e. the mutualistic niche). The location where a switch from one symbiont to another is
expected to take place is where trailing or leading edges of different symbiont populations overlap (i.e. the symbiont turnover zone). (Online version in colour.)
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(i.e. the trailing and leading edges) of particular host–symbiont
combinations within the full range of a mutualism.

Since trailing and leading edges of populations are
particularly sensitive to shifting environmental selection
[21–26], symbiont turnover zones are likely to be critically
important to understand a mutualism’s response to climate
change. For instance, a given shift in climatic selection can dif-
ferentially affect mutualists with different physiological
optima, thereby decoupling the rates at which their trailing
and leading edge populations track their climatic niche
[27–29]. As a consequence, symbiont turnover zones might
experience contraction, expansion or disruption under
ongoing shifts in selection. Similarly, the ability of a host
species to alter its range in response to climate change will
depend on the available physiological variation among its
symbionts [5,19,30,31]. Hence, considering symbiont diversity
together with the environmental conditions that underlie sym-
biont turnover will improve predictions of how abundances
and ranges of keystone mutualisms will shift in the future.
Likewise, correctly locating turnover zones will allow us to
pinpoint geographic areas particularly sensitive to disturb-
ance, because these zones are expected to experience stark
changes in taxonomic diversity and composition under
climate change and other anthropogenic stressors.

Lichens constitute obligate mutualisms in which a fungal
partner (mycobiont) hosts photosynthetic algae and/or cyano-
bacteria (photobionts) in a characteristic thallus structure. Due
to their low dispersal limitations and their ability to withstand
frequent cycles of drying and wetting, some lichen species
occur across large distributional areas and steep ecological gra-
dients [32–34]. Moreover, some mycobionts associate with
different photobiont lineages throughout their distributional
range [35–38], presumably to maintain high photosynthetic
carbon gains beyond the range margins of a single photobiont
strain. Spatial structuring of photobionts associated with a
lichen host has been documented along latitudinal [18,39] as
well as altitudinal gradients [17], suggesting symbiont turn-
over as a result of shifting environmental selection. However,
it is unclear whether symbiont turnover in lichens is gradual
or abrupt, and whether explicit turnover zones can be ident-
ified or geographically located. Consequently, we also lack
an understanding of the particular environmental conditions
associated with photobiont replacement. Moreover, testing
whether there are universal conditions for photobiont replace-
ment ultimately requires repeated predictability of turnover
patterns from similar environmental variables (i.e. parallelism
[40–42]) along independent gradients and in multiple species
of hosts and symbionts.

To address the above knowledge gaps, we here define the
symbiont turnover zone of a mutualistic symbiosis as the area
of the highest co-occurrence probability of symbionts with
distinct performance optima. For instance, along an altitudinal
gradient, a local turnover zone will envelope both the leading
edge of symbionts adapted to low-altitude conditions and the
trailing edge of symbionts adapted to high-altitude conditions
(figure 1). Moreover, due to selective differentiation towards
the edges of the turnover zone, genetic community compo-
sition on either side of the zone should show minimal
overlap. Hence, the patterns of symbiont β-diversity across
the zone are expected to be primarily caused by spatial taxo-
nomic turnover rather than by nested subsets of taxa. We
apply this framework using population-level sampling of
two lichen host species and their phylogenetically distinct
green algal symbionts along replicated altitudinal gradients
in western North America and Europe.

To examine general predictability of turnover patterns, we
then use algal ecotype response functions that were modelled
along a broad-scale latitudinal gradient in Europe to project
turnover predictions onto the aforementioned altitudinal gradi-
ents. Specifically, we ask the following questions. (i) Is there
parallel spatial structuring of photobionts in lichens along repli-
cated environmental gradients? (ii) Which climatic conditions
are associated with photobiont replacements in lichens?
(iii) Can we predict a universal altitudinal turnover zone from
model-based occurrence probabilities of distinct symbiont
ecotypes using information from latitudinal distributions?
2. Material and methods
(a) Photobiont sampling and genotyping
Field sampling of lichen thalli was carried out along four altitudi-
nal gradients: Mount Limbara (Sardinia, Italy; 8 sites); Sierra de
Gredos (Sistema Central, Spain; 6 sites); Mount San Jacinto (Cali-
fornia, USA; 7 sites); and Sierra Nevada (California, USA; 4
sites). Both lichen species in our study, Umbilicaria pustulata
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(reduced to synonymywith Lasallia pustulata) in Europe andUmbi-
licaria phaea in North America, hosted green algae of the genus
Trebouxia as photobionts. Detailed information about sampling
locations and sampling extent is given in electronic supplementary
material, table S1. At each sampling site, small parts of lichen thalli
were collected over an area of roughly 100 m²with aminimumdis-
tance of 0.5 m between individual thalli, aiming to capture the
maximal diversity at each site. From all samples, total genomic
DNA was extracted using a small part of the thallus following
the CTAB protocol [43]. Algal symbionts were sequenced at the
internal transcribed spacer region nrITS rDNA using primers
nrITS1T (f) and nrITS4T (r) based on [44]. PCR amplification,
amplicon sequencing and sequence alignment followed estab-
lished protocols for umbilicate lichens described in [45,46].
Trebouxia sequence identities were confirmed using BLAST
searches in GenBank. Algal diversity at each sampling site was
then analysed at the level of the dominant ITS haplotype
(i.e. greater than 70% of total abundance) in each thallus sample
[47]. Detailed information about Trebouxia ITS haplotypes recov-
ered in this study is given in electronic supplementary material,
table S2, together with GenBank accession numbers. A phylo-
genetic tree comparing ITS sequences of our study to the 69 ITS
OTUs underlying a widely used classification system for
Trebouxia photobionts [48] was calculated using RaxML [49] and
is shown in electronic supplementary material, figure S1.

(b) Climatic profiles along environmental gradients
Models of ecotype response functions (introduced below) were
restricted to a non-exhaustive set of 10 bioclimatic variables (elec-
tronic supplementary material, table S3) that could be reliably
obtained for each of the four altitudinal gradients. For the two
European gradients (Mount Limbara and Sierra de Gredos), bio-
climatic variables were drawn from the WorldClim database [50]
at the highest spatial resolution (approx. 1 km). For the two
North American gradients (Mount San Jacinto and Sierra
Nevada), we used data resources from the PRISM climate
group (PRISM Climate Group, Oregon State University, www.
prism.oregonstate.edu). Along each gradient, we chose 20
ascending climatic sample locations and extracted temperature
variables (monthly min, max and average °C), and precipitation
estimates (mm) to calculate the respective bioclimatic variables.
For all four gradients, we then used generalized additive
models (GAMs) regressing climate variables against altitude to
predict a new set of 200 bioclim datapoints along each gradient
spanning from 100 m to 2700 m altitude. This new set of gradi-
ent-specific model-based climate variables was then used to
project ecotype response function models onto each gradient.
We note that the used data sources (WorldClim and PRISM)
do not consider effects of slope or aspect on mountain climate;
as a result, the fine-scale accuracy of model projections
may differ between individual gradients. Climatic variables for
the latitudinal gradient across Europe were obtained from
WorldClim [50] based on sampling described in [18].

(c) Modelling and predicting environmental response
functions

To achieve sufficient climatic resolution and predictive power in
ecotype response functions, we trained logistic GAMs based on a
large-scale latitudinal dataset of two distinct Trebouxia ecotype
clusters from warm and cool temperate biomes across Europe:
the arctic–alpine ecotype and the Mediterranean ecotype
described in [18]. In particular, these ecotypes were chosen
because their contrasting climatic preferences encompass the
observed climatic range experienced across the altitudinal turn-
over zones. The occurrence probability distributions along
each bioclimatic variable obtained this way were then used to
calculate the co-occurence probability as the product of the
respective response functions (electronic supplementary material,
figure S2). Using the 200 model-based bioclimatic datapoints
along each of the four altitudinal gradients (see above), we
then projected co-occurence probabilities of the warm- and cold-
preferring algal ecotypes (i.e. symbiont turnover probabilities;
electronic supplementary material, figure S2) onto each gradient.
We applied this framework to each of the 10 bioclimatic variables
separately, as well as to three more complex GAMs that included
two predictors and their tensor product interaction terms, respect-
ively. For the latter framework, we chose three pairs of predictor
variables to address critical moisture availability during the
driest quarter (BIO9 ⊗ BIO17), the warmest quarter (BIO10 ⊗
BIO18) and the coldest quarter (BIO11 ⊗ BIO19). All trained
GAMs were evaluated based on combined AIC scores (electronic
supplementary material, figure S3) to obtain the best predictive
models for single predictor variables and variable interactions.
Results from the model predictions for each gradient (i.e. co-
occurence probabilities of both ecotypes) were plotted along
altitude together with their 95%CIs obtained from the GAM
output. All GAM models used restricted maximum likelihood
(REML) to estimate smoothing parameters and were implemented
using the mgcv package in R [51–53].

(d) diversity, turnover and diversity ordinations
β-diversity among sampling sites was calculated based on Jac-
card dissimilarity, using the R package vegan [54]. Distance
matrices were then further partitioned into turnover versus nest-
edness components using the R package betapart [55], of which
we report the turnover component. Congruence between pre-
dicted turnover (derived from co-occurence probabilities) and
observed turnover (derived from Jaccard dissimilarities) along
gradients was evaluated by Procrustean superimposition of pair-
wise turnover distances between sampling sites and their relative
distances to the peak of the prediction curve (see electronic sup-
plementary material for details). To investigate regional diversity
within the two (continental) pools of Trebouxia photobionts inde-
pendent from a particular gradient, we combined data from both
European gradients and from both North American gradients,
respectively. For each pool, we calculated Jaccard dissimilarity
matrices depicting the diversity between sampling sites. These
matrices were then visualized using NMDS ordinations that
were rotated to altitude to better depict the relationship between
low-altitude and high-altitude diversity.
3. Results
(a) Symbiont diversity along altitudinal gradients
Analyses of population genetic diversity at the algal ITS locus
revealed that the Trebouxia communities in U. pustulata from
Europe were highly differentiated from those in U. phaea
from North America (electronic supplementary material,
figure S1). Overall, our study reveals widespread geographic
distributions of identical algal lineages (greater than 800 km,
across each continent) coupled with concentrated local struc-
turing (less than 10 km, along each gradient), indicating that
photobiont distributions are governed by climate rather than
by dispersal limitations at the continental scale. Within both
photobiont community pools, we found marked spatial gen-
etic structure indicating altitudinal niche partitioning along
replicated gradients that coincided with the transition from
the warm temperate (Mediterranean) to the cool temperate
biome (figure 2a,b). Moreover, partitioning of Jaccard dissim-
ilarity and focusing on the turnover component among
sampling sites (i.e. non-nestedness [56–58]) confirmed
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Figure 2. Spatial niche partitioning among Trebouxia symbionts along four independent altitudinal gradients. Upper panel depicts sampling sites in Europe (L1–7:
Mount Limbara; G1–6: Sierra de Gredos); lower panel depicts sampling sites in California (N1–4: Sierra Nevada; J1–7: Mount San Jacinto). (a) Sampling sites along
each gradient with colours indicating climate strata (I–III) derived from cluster analysis of 10 bioclimatic variables (electronic supplementary material, table S3).
Shared y-axis depicts altitude in metres. (b) Violin plots of abundance distributions for the three most common algal haplotypes, based on pooled sampling sites
within Europe and North America respectively. (c) Turnover among algal symbionts, calculated across sampling sites. The turnover component (i.e. β-diversity) is
based on partitioned Jaccard dissimilarity matrices and is visualized with dendrograms. Background colours of tips refer to the same climate strata as indicated in (a).
(Online version in colour.)

royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

287:20192311

4

taxonomic replacement––rather than nestedness––as the pre-
dominant structural pattern of photobiont β-diversity
between high-altitude and low-altitude sites (figure 2c).
This pattern was also confirmed with diversity NMDS ordi-
nations clearly separating sites by altitude independent of a
particular gradient (electronic supplementary material,
figure S4). Together, these results suggest that similar ecologi-
cal segregation among geographically independent and
phylogenetically distinct photobiont communities (i.e. eco-
types) promotes parallel climatic niche expansions from low
to high altitudes in both species of lichenized fungi. Conse-
quently, our sampling sites along each of the four mountain
slopes should encompass similar symbiont turnover zones
where contrasting photobiont ecotypes co-occur at their trail-
ing and leading edges, respectively (figure 1). We used GAM
of Trebouxia ecotype response functions to predict the exact
locations of these zones and to test which climatic variables
underlie the observed parallelism in niche expansions of the
lichen symbiosis.
(b) Predicting symbiont turnover zones
Latitudinal GAMs were first evaluated based on AIC com-
parison (electronic supplementary material, figure S3), and
niche predictions from the best-performing GAMs (i.e. com-
bined ΔAIC < 10) were then projected onto the four
altitudinal gradients to find the areas of maximized ecotype
co-occurrence (i.e. symbiont turnover zones; electronic sup-
plementary material, figure S2). Applying this GAM
framework to ten climatic variables (electronic supplemen-
tary material, table S3) revealed that mean annual
temperature (BIO1) together with mean temperature of the
coldest quarter (BIO11) were the strongest univariate
predictors that accurately located symbiont turnover zones
along each gradient. Specifically, GAM predictions based
on variables BIO1 and BIO11 correctly placed local
maxima of ecotype co-occurrence at altitudes congruent
with the actual photobiont β-diversity turnover recorded
along each gradient (figure 3a; electronic supplementary
material, figure S5). Correspondingly, symbiont commu-
nities on either side of the predicted local co-occurence
maxima were more similar to each other than expected
from random association (European gradients: rBIO1 = 0.80,
p < 0.005; rBIO11 = 0.70, p < 0.01; Californian gradients:
rBIO1 = 0.82, p < 0.01; rBIO11 = 0.72, p < 0.01; Procrustes super-
imposition of distance matrices). The turnover zones
depicted in this way were similar in width and were charac-
terized by similar temperature regimes (table 1). Peak levels
of ecotype co-occurrence were predicted to occur across a
delimited altitudinal belt, approximately 150–200 m wide,
and located at different altitudes at each gradient (figure 3a;
electronic supplementary material, figure S5). None of the
single precipitation variables included in our analyses suc-
cessfully predicted local maxima of co-occurrence that
were congruent with the observed photobiont turnover
(electronic supplementary material, figure S5). Yet, model-
ling the interaction of precipitation and temperature again
confirmed turnover zones centred in between high- and
low-altitude communities from Europe and North America,
respectively. More specifically, GAM predictions from inter-
actions between precipitation and temperature of the
warmest quarter (BIO10 ⊗ BIO18) performed best across all
gradients (electronic supplementary material, figure S3 for
ΔAICs) and correctly located ecotype co-occurrence maxima
near the centre of community distance-based β-diversity
turnover (European gradients: rBIO10⊗ BIO18 = 0.61, p < 0.05;
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Californian gradients: rBIO10 ⊗ BIO18 = 0.69, p < 0.05; figure 3b).
The results for all tested interaction terms are depicted in elec-
tronic supplementary material, figure S6. In addition, the
interaction between precipitation and temperature of the
coldest quarter (BIO11 ⊗ BIO19) was an important predictor
of turnover, yet only at one of the four gradients (Mount Lim-
bara: rBIO11⊗ BIO19 = 0.81, p < 0.05; electronic supplementary
material, figure S6).



Table 1. Altitudinal location and temperature profiles for the predicted
turnover zones along each of the four gradients. Values represent average
temperatures (± s.d.) of a confined zone around the peak of the co-
occurence probability curves. Variable selection was based on ΔAIC and
prediction accuracy (i.e. comparing peak location to observed turnover
location).

gradient altitude (m)

average temperature (°C)

annual
coldest
quarter

Mount Limbara ∼700–800 12.31 ± 0.30 5.69 ± 0.27

Sierra de Gredos ∼900–1000 12.04 ± 0.15 4.41 ± 0.13

Sierra Nevada ∼1200–1300 12.30 ± 0.13 4.88 ± 0.10

Mount San Jacinto ∼1600–1700 12.45 ± 0.20 5.31 ± 0.18
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In summary, we show that photobiont turnover zones
could be repeatedly predicted from the same set of niche par-
ameters (i.e. temperature and temperature x precipitation)
along independent altitudinal gradients. The GAM frame-
work underlying these predictions was trained and
evaluated on the occurrence data of photobiont ecotype clus-
ters along a Europe-wide latitudinal climatic gradient. Our
results thus indicate (i) parallel spatial structuring and
niche partitioning of photobionts in lichens along replicated
environmental gradients, (ii) annual average temperature,
average temperature of the coldest quarter and critical
moisture availability during the warmest quarter as the cli-
matic drivers of photobiont replacement and (iii) similar
climatic selection regimes underlying predictable symbiont
replacements along latitudinal and altitudinal gradients.
4. Discussion
The mutualistic niche concept states that the realized niche
space of a mutualistic host can be expanded by the availability
and replacement of symbionts with distinct, non-overlapping
performance optima along particular niche axes [5,19,20].
Our study highlights the significance of locally confined sym-
biont turnover zones as an integral and useful part of this
concept. In particular, we show that studying turnover zones
along environmental gradients provides a crucial first step to
scrutinize the ecological processes underlying mutualist-
mediated niche dynamics. We argue that symbiont turnover
zones serve to address two key hypotheses in the mutualistic
niche concept: (i) variation in performance optima among
symbionts stabilizes the benefit for mutualists that associate
with multiple partners across their realized niche space (port-
folio effect [20,59]); and (ii) similar environmental transitions
promote similar symbiont turnover patterns in independent
niche expansions (parallelism).

Lichen-forming fungi are known to exhibit distinctly
structured photobiont communities throughout their distri-
butional ranges [16,17,37,60]. Recent niche modelling
studies show that unique portions of a lichen’s overall
niche space can be partitioned among genetically distinct
photobiont lineages [18,39], thus suggesting that particular
environmental transitions probably evoke symbiont replace-
ments. Our current investigation of symbiont turnover
zones lends general support for this hypothesis. For the
first time, we show that photobiont turnover (i.e. non-
nested β-diversity) along independent altitudinal gradients
in Spain, Italy and California takes place abruptly and
across confined zones characterized by similar climatic con-
ditions (figure 2). Accordingly, diversity ordinations based
on pooled sampling sites in Europe and California, respect-
ively, show significant separation of low-altitude versus
high-altitude communities, independent of individual gradi-
ents (electronic supplementary material, figure S4). Such
strong non-nested spatial segregation between genetically
closely related types with low dispersal limitation indicates
climatic niche partitioning of photobionts along the altitudi-
nal gradient. Moreover, we find that the approximate
location of symbiont turnover along each gradient is predict-
able from climatic response functions of distinct photobiont
ecotypes from a latitudinal gradient across Europe. Notably,
prediction accuracy was independent of lichen host species
or phylogenetic background of the Trebouxia photobionts.
The examination of turnover zones thus strongly suggests
parallel range expansions from low- to high-altitude (and lati-
tude) habitats based on convergent diversification of
symbiont ecotypes. Likewise, given the broad host spectrum
and extensive biogeographical range of Trebouxia photobionts
[35,48,61–63], the pattern we describe conceivably applies to
other lichen species as well.

We used AIC model selection together with prediction
accuracy of different response functions as an indicator to
ask which transitions in which climatic variables most
likely evoke symbiont turnover. From the non-exhaustive
list of climatic variables we tested, temperature was the
most accurate predictor of altitudinal symbiont turnover.
More specifically, turnover zones were characterized by a
mean annual temperature (BIO1) of approximately 12°C
and a mean temperature of the coldest quarter (BIO11) of
approximately 5°C (table 1). In addition, critical moisture
availability, depicted here by the interaction of temperature
(BIO10) and precipitation (BIO18) during the warmest quar-
ter, was found to be an important predictor of photobiont
turnover across all gradients (figure 3b). Together, these
values indicate that the studied turnover zones bridge the cli-
matic transition from warm temperate to cool temperate
biomes [64]. Similar climatic transitions have been shown to
impact photosynthetic performance and to promote ecotype
differentiation in other lichen species, both experimentally
[65–70] and bio-geographically [16,17,71]. Nonetheless,
explicitly applying the concept of turnover zones, we here
show––for the first time––a general and predictable pattern
of climate-driven symbiont replacement that corroborates
previous hypotheses of symbiont-mediated niche expansions
in lichens.

We note, however, that the single-marker approach we
use will only depict the dominant photobiont lineage (i.e.
greater than 70% of total abundance) for each sample [47],
thereby ignoring the presence of multiple symbionts in a
single thallus [17,69,72]. Hence, despite the clear turnover
pattern in (dominant) photobionts, our data are indeed insuf-
ficient to distinguish between two mutually non-exclusive
hypotheses for the cause of this pattern. On the one hand,
lichen turnover zones might be primarily caused by envi-
ronmental filters that target contrasting physiological
adaptations in photobionts [70,71]. This scenario is in accord-
ance with a dynamic niche expansion that is indeed contingent
on the availability of distinct symbiont ecotypes providing
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benefits to the host. On the other hand, turnover among domi-
nant photobionts might also be caused by variation in
intraspecific competition among algal lineages within the
same lichen thallus, irrespective of benefits to the host. Given
that competitive dominance depends on environmental con-
ditions [73,74], the latter scenario would thus result in similar
convergence among symbionts across the turnover zones; yet
the niche dynamics of the host would not be genuinely sym-
biont mediated. Nonetheless, the consistency in the
environmental transitions we find for independent symbiont
turnover zones provides a valuable starting point for going for-
ward in testing competing hypotheses. In particular, informed
experiments are needed to investigate whether climatic con-
ditions on either side of the turnover zone differentially affect
photosynthesis and/or competitive ability in different algal
strains [69–71].

In conclusion, the characterization of symbiont turnover
zones is a promising step toward a better understanding of
mutualist-mediated niche dynamics, particularly in obligate
symbioses such as corals, lichens or mycorrhizae. To study
the role of different symbiont partners in expanding a
host’s niche breadth, it makes sense to investigate the
environmental transitions that promote compositional turn-
over among those symbionts. The insights thus gained
allow for a better description of environmental selection
pressures underlying mutualistic range expansions (or con-
tractions). Moreover, it is vitally important to explicitly
consider conditions of symbiont turnover in the predictions
of range limits and/or climate change responses of mutual-
isms. We here suggest a two-step framework to locate and
verify turnover zones along environmental gradients based
on a detailed characterization of β-diversity (i.e. turnover
versus nestedness) and model-based inference of symbiont
co-occurence probability. As an example, we demonstrate
symbiont turnover zones within the mutualistic niches of
lichen-forming fungi and their algal symbionts along inde-
pendent environmental gradients. We identify consistent
transitions in temperature and critical moisture availability
associated with parallel symbiont replacements, thereby
informing future research regarding the extent of ecotypic
differentiation among algal symbionts in lichens. In general,
similar work addressing the resilience of symbiotic inter-
actions toward ongoing environmental change will benefit
from incorporating symbiont turnover zones into the concept
of the mutualistic niche.
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