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Optimizing growth chamber conditions for maintaining
Arctic lichen-dominated biocrusts
Sarah A. Ficko1,2 , Alexandra McClymont3, Diane L. Haughland4,1, M. Anne Naeth1

Optimizing growth chamber conditions for Arctic lichen biocrusts will create new opportunities to assess and prioritize recla-
mation techniques given the challenges associated with conducting arctic field work. Our study is the first to examine growth
chamber conditions for optimizing survival and growth of Arctic lichen biocrusts, as measured by changes in lichen cover.
We assessed effects of substrate crossed with substrate depth, substrate sterilization, lichen inoculation and community compo-
sition, and watering frequency in four concurrent experiments over 6 weeks on survival of arctic biocrusts collected from Dia-
vik DiamondMine Inc., Northwest Territories, Canada. Mixed species declined less than Flavocetraria cucullata, and substrate
affected F. cucullata survival over time. Live lichen cover declined least with a 3-day watering frequency and substrate depth of
1 cm. Sterilization did not affect lichen survival, and no contamination was observed over 6 weeks. Our results highlight the
challenges of maintaining and growing lichens under controlled conditions, as only a few treatments showed increases in cover.
Our research shows that even short-term growth chamber experiments have potential to screen reclamation treatments prior to
field assessments, permitting reclamation scientists to optimize limited time and resources while in the field.
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Implications for Practice

• Substrate properties and species composition must be
considered in future biocrust growth chamber experi-
ments, as mixed species declined less than Flavocetraria
cucullata, and substrate affected F. cucullata survival
over time.

• We recommend using a 3-day watering frequency and a
1 cm substrate depth for microcosms similar to the ones
in our study; substrate sterilization was unnecessary, at
least in the short term.

• Assessment of reclamation treatments in short-term
growth chamber experiments has the potential to screen
and select treatments prior to field experimentation; how-
ever, longer studies and detailed observations of the phys-
iological response of biocrust species should be
conducted to validate short-term results as translatable
to responses in the field.

Introduction

Biocrusts are complex communities of poikilohydric species
including algae, bacteria, bryophytes, cyanobacteria, lichens,
and microfungi. They contribute to important ecological pro-
cesses in arctic and arid environments worldwide, but are highly
susceptible to natural and anthropogenic disturbances
(Eldridge & Greene 1994; Harper & Kershaw 1996; Ferrenberg
et al. 2015); estimates for natural biocrust recovery range from

years to millennia (Bowker 2007; Weber et al. 2016; Kidron
et al. 2020). Reclamation in the arctic is particularly challenging
due to limited, expensive field site access, and a short growing
season. This also limits the extent and breadth of research on
reclamation techniques, particularly on the reclamation of bio-
crusts. If reclamation scientists could test treatments in a growth
chamber, that could allow them to optimize limited field time in
the arctic. To date, only four studies have assessed lichen bio-
crust survival in a controlled environment for reclamation pur-
poses (Maestre et al. 2006; Bowker & Antoninka 2016;
Antoninka et al. 2018; Bowker et al. 2020), and eight studies
have examined optimal growth chamber conditions for field-
collected lichen species (Kershaw & Millbank 1969; Dib-
ben 1971; Galun et al. 1972; Bidussi et al. 2013; Bu
et al. 2013; Antoninka et al. 2015; Gauslaa et al. 2016; Zhao
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et al. 2016). The majority of this work has been done in lower
latitude dryland systems and none of these studies have assessed
growth chamber conditions for Arctic lichen biocrusts.

Of the studies on lichens and lichen dominated biocrusts,
common inoculation techniques in the field and growth chamber
included selecting individual species, transplanting intact crust
pieces, or artificial fragmentation of crust material (sieving, pul-
verization, or wet slurry) (Maestre et al. 2006; Roturier et al.
2007; Bowker et al. 2020). Growth chamber watering regimes
varied from daily, every few days, to once a month, with several
studies emphasizing the importance of alternating wet and dry
periods (Galun et al. 1972; Maestre et al. 2006; Antoninka
et al. 2018). Lichens are sensitive to substrate properties includ-
ing pH, texture, and nutrients (Robinson et al. 1989; Belnap &
Eldridge 2001; Bowker et al. 2005). Lichen cultivation was
often on artificial media such as agar or filter paper, although
lichen and moss biocrust growth has occurred on soil and com-
mon sand (Xu et al. 2008; Bowker & Antoninka 2016; Zhao
et al. 2016). Although substrate sterilization before experimen-
tation is common to limit algae, bacteria, and fungi, contamina-
tion was attributed to external sources such as concurrent
experiments sharing the growth chambers rather than experi-
mental material (Dibben 1971; Duckett et al. 2004; Zhao
et al. 2014). Duckett et al. (2004) found contamination often
started within 1 week. Substrate depth was rarely examined,
but may affect water retention. Lichens generally grow slowly,
but growth was observed within 2–9 weeks in several studies
for individual lichen species and various biocrusts, indicating
short term studies can assess treatments (Dibben 1971; Zhao
et al. 2014; Gauslaa et al. 2016).

Here, we present the results of a pilot study with four experi-
ments that tested the effect of growth chamber conditions on
Arctic lichen biocrust survival and growth. We assessed the
effects of substrate crossed with substrate depth, substrate steril-
ization, lichen inoculation and community composition, and
watering frequency on survival of arctic biocrusts from Diavik
Diamond Mine Inc., Northwest Territories, Canada, over
6 weeks in a growth chamber. We hypothesized that tundra soil
would be a better substrate than crushed rock across the experi-
ments as it is the natural substrate for these biocrusts, and greater
depths would result in better biocrust survival than shallow as
tundra soil was greater than 5-cm deep at the collection site.
We also tested whether autoclaved substrates would reduce con-
tamination by other biota. We hypothesized that a sieved mix of
biocrust material, similar to natural fragment dispersal, would
enhance growth and survival compared to an unsieved mix or
single species; and that a 2-day watering regime that permitted
wet-dry cycles would be optimal for biocrust growth.

Methods

Biocrust Source Characteristics

Diavik Diamond Mine is located 100 km north of the treeline
and 320 km northeast of Yellowknife, Northwest Territories
(64�3004100N, 110�1702300W), on an island in Lac-de-Gras.
Lac-de-Gras lies in the Point Upland Arctic Ecoregion

(Ecosystem Classification Group 2012); mean annual precipita-
tion is 285 mm (over half snow) and mean annual temperature
�9�C from 2011 to 2016. Uplands are vegetated by dwarf-heath
shrubs and lichen-dominated biocrust communities (fig. S1 in
Ficko et al. 2022), with a short growing season between late
May and mid-August. Vegetation cover is 80 to 100% in mesic
to wet areas, with lichens providing 25% or more ground cover
in some areas (Kidd 1996; Naeth &Wilkinson 2008; Ecosystem
Classification Group 2012). Dominant shrub species include
Arctous rubra (Rehder & Wilson) Fernald (red bearberry),
Betula glandulosa Michx. (bog birch), Empetrum nigrum
L. (crowberry), Kalmia procumbens (L.) Gift & Kron (alpine
azalea), Rhododendron tomentosum Harmaja (marsh Labrador
tea), Salix species (willow), Vaccinium uliginosum L. (bog bil-
berry), and Vaccinium vitis-idaea L. (bog cranberry). More than
50 species of macrolichens have been identified at Diavik,
including Alectoria ochroleuca (Hoffm.) A. Massal., Bryocau-
lon divergens (Ach.) Kärnefelt, Bryoria nitidula (Th. Fr.)
Brodo & D. Hawksw., Cetraria Ach. Species, Cladonia
P. Browne species (including cupped species and reindeer
lichens),Dactylina arctica (Hooker f.) Nyl., Flavocetraria cucul-
lata (Bellardi) Kärnefelt & A. Thell, Flavocetraria nivalis (L.)
Kärnefelt & A. Thell, Gowardia nigricans (Ach.) P. Halonen,
L. Myllys, S. Velmala, & H. Hyvärinen,Masonhalea richardso-
nii (Hooker) Kärnefelt, Sphaerophorus globosus (Hudson) Vai-
nio, Stereocaulon Hoffm. species, and Thamnolia vermicularis
(Sw.) Ach. Ex Schaerer. Taxonomy follows Esslinger (2019).

Experimental Design

We conducted four concurrent experiments in a single growth
chamber; each experiment assessed lichen survival and growth
over time on two substrates available at Diavik (crushed rock,
tundra soil), crossed with one other factor. Experiment
1 assessed substrate sterilization (autoclaved, unautoclaved),
experiment 2 inoculation and lichen species composition
(F. cucullata, none, sieved mixed species, unsieved mixed spe-
cies), experiment 3 substrate depth (1, 1.5, 2 cm), experiment
4 watering frequency (damp; 1, 2, 3, 10 days) (Table 1;
Fig. 1). Each treatment was replicated five times totaling
120 experimental units, and placed in clear plastic germination
dishes (microcosms, 11 � 11 � 3 cm). Baseline conditions for
the second factor (sterilization, species composition, substrate
depth, watering frequency), were autoclaved substrate, sieved
mixed species, 2 cm substrate, and 2-day watering; replicates
for the baseline treatments on both substrates were used in all
four analyses. For each experiment, the values for the other three
possible factors were held at baseline. Replicates for each treat-
ment were randomly positioned in the growth chamber and
remained in the same location for the duration of the experiment.

Tundra soil was collected from an undisturbed area on the
southernmost tip of the island. A mix of mineral and organic soil
was collected from 5 to 30 cm after removing surface vegeta-
tion. Crushed rock, the most common mining by-product at Dia-
vik, was collected from unvegetated stockpiles in October.
Substrates were transported in sealed 20 L buckets. Tundra soil
and crushed rock were sieved to 2 cm to increase homogeneity
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by removing clods, plant roots, and rocks. Crushed rock had pH
7.8, loamy sand texture, and total organic carbon 0.1%; tundra
soil had pH 4.5, sandy loam texture, and total organic carbon
2.7% (Miller & Naeth 2017). Sterilized substrates were auto-
claved twice at 121�C for 3 hours. Most microcosms received
242 mL of substrate (2 cm), except depth treatments which
received 182 mL (1.5 cm), or 121 mL substrate (1 cm).

Biocrusts with visible fruticose macrolichens were hand col-
lected using a trowel on 24 September and 25, 2014 from a sim-
ilar area as tundra soil. A biocrust species mix (sieved, unsieved)
was used, as multiple species naturally grow together in tundra
communities. The mix was compared to F. cucullata, the most
frequent lichen on site, to determine if this species can be used
as an indicator of crust growth and survival. Crust material
was air dried for 5 days, then transported in brown paper bags
and frozen at �10�C prior to use. Biocrust material was hand
mixed then sieved on a 1-cm grid. Sieved fragments were
weighed (6 g) and refrigerated in paper bags at 4�C until place-
ment. F. cucullatawas hand picked and weighed (4 g for similar
coverage as sieved mixes). For unsieved mixes, 6 g of intact

crust (one or more pieces) were weighed. Microcosms were
inoculated by evenly scattering a thin layer of dry crust material
(sieved mix or F. cucullata) across substrate surfaces, or placing
intact pieces on the surface and gently pushing down to ensure
good substrate contact.

Microcosms were placed in a growth chamber with day tem-
perature 17�C for 20 hours and night temperature 10�C for
4 hours based on mid-May to mid-June Diavik temperatures.
To determine a watering regime with suitable wet/dry cycles
for normal growth, samples were surface watered every 1, 2,
3, or 10 days or kept damp (substrate surface remained moist
due to volume of water added daily). Watering was before day-
light with 40 mL (34.2 mm) distilled water, except the 1 day
treatment which received 30 mL (31.1 mm) so it was not
flooded and could undergo wet-dry cycles.

Statistical Analyses

Microcosms were photographed after set up and 6 weeks later to
assess changes in live biocrust cover over time. Pictures were

Table 1. Experimental design for Experiments 1–4.

Treatment # Substrate Sterilization Inoculation Watering Depth (cm) Reps

Experiment 1: Substrate Sterilization
2 Crushed rock Not autoclaved None 2-day 2 5
10 Sieved mix 2-day 2 5
1 Autoclaved None 2-day 2 5
5 Sieved mix 2-day 2 5
14 Tundra soil Not autoclaved None 2-day 2 5
22 Sieved mix 2-day 2 5
13 Autoclaved None 2-day 2 5
17 Sieved mix 2-day 2 5
Experiment 2: Lichen Species Composition
1 Crushed rock Autoclaved None 2-day 2 5
6 Flavocetraria cucullata 2-day 2 5
5 Sieved mix 2-day 2 5
7 Unsieved mix 2-day 2 5
13 Tundra soil Autoclaved None 2-day 2 5
18 F. cucullata 2-day 2 5
17 Sieved mix 2-day 2 5
19 Unsieved mix 2-day 2 5
Experiment 3: Substrate Depth
8 Crushed rock Autoclaved Sieved mix 2-day 1 5
9 1.5 5
5 2 5
20 Tundra soil Autoclaved Sieved mix 2-day 1 5
21 1.5 5
17 2 5
Experiment 4: Watering Frequency
3 Crushed rock Autoclaved Sieved mix Damp 2 5
4 1-day 2 4
5 2-day 2 5
11 3-day 2 4
12 10-day 2 5
15 Tundra soil Autoclaved Sieved mix Damp 2 5
16 1-day 2 5
17 2-day 2 5
23 3-day 2 5

24 10-day 2 5
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cropped and edited to enhance colors and minimize shadows,
then analyzed using SamplePoint (Booth et al. 2006). A
12 � 12 grid was overlaid on each picture (144 points), and
each point was manually identified as live or dead lichen spe-
cies, mosses, other, or litter, substrate, or unknown (unidentifi-
able). Dead lichens were identified by changes in color
(bleaching or necrotic, brown-reddish coloration) and form
(shriveled or decomposed/disappearing). Number of live lichen
points was divided by the total number of points minus number
of unknown points to estimate percent live lichen in each micro-
cosm, then the difference between start and end values were ana-
lyzed to determine effects on lichen survival over time.

Model estimation and statistical analyses were conducted
using R (Version 4.0.2, 2020). “No lichen” inoculation treat-
ments used as a negative control for the experiment did not con-
tain or develop live lichen at either time in any replicate, so were
removed prior to statistical analysis. We used quantile–quantile
plots, Anderson–Darling, and Shapiro–Wilk tests (nortest pack-
age, Gross & Ligges 2015) to assess whether the data were nor-
mally distributed, and plotted residuals against fitted values to
assess for homoscedasticity. Data from experiments 1 and 3were
normally distributed and homoskedastic, while data from exper-
iments 2 and 4 were statistically significantly non-normal in one
or both tests. While linear models are relatively robust to

Figure 1. Images of microcosms at start of the experiment on crushed rock (a–f) and tundra soil (g–l), by depth (a and g= 1 cm, b and h= 1.5 cm, c and i= 2 cm)
and lichen species composition (d and j = none, e and k = Flavocetraria cucullata, c and i = sieved mix, f and l = unsieved mix). Numbers after the letter
correspond to treatments in Table 1.
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deviations from a gaussian distribution (Knief & Forstme-
ier 2021), we analyzed all experiments with parametric analyses
of variance (ANOVA) fitted with the lm function, analyzing for
all two-way interactions, and we also analyzed the latter two
experiments with non-parametric permutation ANOVA
(999 permutations, perm.anova through the RVAideMemoire
package, Hervé 2022). p Values for the two methods were
always within 0.01 and the analytical methods were consistent
in determining whether an experimental treatment was statisti-
cally significant. Fixed effects were substrate and sterilization
in experiment 1, substrate and lichen community composition
in experiment 2, substrate and substrate depth in experiment
3, and substrate and watering treatment in experiment 4. Pair-
wise comparisons within each treatment or interaction were
conducted with a Tukey post hoc test, adjusted for multiple com-
parisons. Nonparametric data were rank-transformed for nor-
mality prior to post-hoc testing. Substrate p values were
adjusted using a Bonferroni correction to account for use in four
separate tests. Plots were made using ggplot2 package
(Wickham 2016). We provide observed mean lichen cover �
standard errors in our presentation of results.

Results

Across our experiments, we found that live lichen cover
declined in almost every treatment. The exceptions were sieved
mix on tundra soil watered every 3 days, and 1-cm depth sieved
mix (Fig. 2). Substrate generally did not interact with the second
factor in any of the experiments. The magnitude of the decline
did not differ between substrates for the sterilization treatment
(Table S1; Fig. 2A). The numerically larger decline in live
lichen cover on sterilized versus unsterilized substrates was
not significant.

The only exception was a two way interaction that was signif-
icant for substrate and lichen species composition (Table S1;
Fig. 2B). Change in lichen cover for Flavocetraria cucullata
on crushed rock was the main driver for interaction as it
decreased 40.7 � 4.1%, with approximately six times greater
decline than F. cucullata on tundra soil (6.7 � 4.2%), and was
significantly different from all other treatments (Table S1;
Fig. 3B). While unsieved mix on crushed rock declined nine
times more than unsievedmix on tundra soil, no other treatments
were significantly different.

Substrate and the two way interaction between substrate and
substrate depth were not significant (Table S1; Fig. 2C). Live
lichen cover increased on 1 cm substrate (4.3 � 3.0%;
Fig. 3a), but decreased for 1.5 cm (0.9 � 2.0%) and 2 cm
(6.8 � 2.7%). A 2 cm depth was significantly different from
1 cm but not 1.5 cm.

The two-way interaction between substrate and watering on
change in live lichen cover between weeks 0 and 6 was not sig-
nificant (Table S1; Fig. 2D). Damp crushed rock exhibited the
greatest decline (44.1 � 4.0%); 3-day watering on tundra soil
was the only watering frequency to increase lichen cover
(2.6 � 4.4%). Substrate and watering treatments were each sig-
nificant. Crushed rock had greater decreases in live lichen cover
(18.0 � 3.8%) than tundra soil (9.3 � 2.6%). Damp treatments

had largest decreases in live lichen cover (32.8 � 4.5%), fol-
lowed by 1-day watering (22.3 � 3.2%). Damp and 1-day
watering were not significantly different, but were significantly
different from all other watering treatments. Two, three, and
ten days between waterings were not significantly different
(decreases 6.8 � 2.7, 1.7 � 4.0, 3.5 � 2.5%, respectively).

Discussion

Here, we present the first study of arctic, lichen dominated bio-
crust response to growth chamber conditions. While the study
was limited in duration, we believe it offers valuable lessons
for future reclamation research.

Sterilization

Autoclaving substrates prior to growth chamber experiments is
common and sometimes required to prevent overgrowth of algae
or other microbiota in substrates (Dibben 1971; Maestre
et al. 2006). Sterilization was not necessary for our substrates
as we did not observe any contamination, and unsterilized
microcosms did not exhibit significantly greater lichen loss.
Zhao et al. (2014) did not sterilize substrates and had no issues
with contamination after 10 weeks. Muczynski (2014) found
unautoclaved treatments had more chlorophyll a than auto-
claved after mixed culture inoculation with cyanobacteria and
green algae, indicating soil organisms may be beneficial for bio-
crust growth. When using substrates gathered from the field, we
recommend future studies continue to explore potential benefits
of unsterilized substrates.

Lichen Species Composition and Substrate

The large decline of Flavocetraria cucullata on crushed rock
relative to the smallest decline of unsieved mix on tundra soil
indicates reclamation experiments must account for specific spe-
cies’ survival which may depend on substrate. Similarly, we
documented species specific results for arctic lichen dominated
biocrusts in our field study (Ficko et al. 2022), while growth
chamber studies of dryland biocrusts documented species-
specific responses, with increases in lichens with cyanobacterial
partners and concomitant decreases in lichens with green algal
photosynthetic partners (Bowker & Antoninka 2016). However,
as biocrusts may decline initially in the growth chamber and
then start to grow again (Antoninka et al. 2015), future studies
should assess arctic biocrust growth and survival over longer
time periods. Techniques to quantify photosynthetic activity
could assist in detecting changes in biocrust growth and survival
(Williams et al. 2017).

Effect of substrate properties on biocrust survival has not
been well studied, although several studies showed soil pH can
influence lichen composition and distribution (Gould &
Walker 1999; Löbel et al. 2006; Zraik et al. 2018). The much
higher pH of crushed rock than tundra soil may account for
greater decline of F. cucullata relative to sieved and unsieved
mixes, as greater species diversity in mixes meant some species
may have been less affected by higher pH. Differences in
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substrate texture and organic matter may have influenced lichen
survival. Several studies found lichen species prefer loamy or
fine textured clay loam soil over sandy or coarse textured sandy
loam soil (Eldridge & Greene 1994; Antoninka et al. 2020);
however, other studies have documented greater growth on
common sand as compared to native soil (Ayuso et al. 2020).
While crushed rock had a loamy sand texture, and tundra soil a
sandy loam texture, crushed rock visually formed a hard surface
crust after wetting and drying, likely due to lower organic matter
and sedimentation. Water was unable to infiltrate as quickly on
crushed rock, likely due to the surface crust, which left lichens
wetter for longer (see Watering Frequency). F. cucullata frag-
ments generally lay closer to the surface than sieved or unsieved
mixes, as shape and size were more uniform so had less variable
microtopography to lift them off the substrate surface.

Substrate Depth

In this experiment, we learned a 1 cm substrate depth was most
suitable as survival decreased as substrate depth increased; how-
ever, our selected 2 cm baseline may have negatively influenced
results in other experiments as most treatments showing a
5–10% decrease which aligned with the decline observed using
a 2 cm depth. As distance from overhead lights was not stan-
dardized between depth treatments, differences in results may
be due to substrate depth and/or environmental factors such as
surface temperature and drying rates. Substrates in 1 cm treat-
ments likely dried faster than deeper substrates. Biocrusts on
2 cm depth were closer to tops of microcosms, with potentially
greater air flow than more sheltered 1 cm microcosms. While
we successfully screened for depth, future experiments should
standardize substrate depth and distance to overhead lights,

Figure 2. Change in observed live lichen cover between weeks 0 and 6 on crushed rock (black bars) and tundra soil (gray bars) for (A) sterilization, (B) lichen
species composition (Flavocetraria cucullata, sievedmixed lichen, unsievedmixed lichen), (C) substrate depth (cm), and (D) watering frequency (day). Each bar
represents the mean (n = 5) and error bars represent � SE. p Values for each factor and the interaction are include on each figure. p Values for (A) and (C) are
from parametric ANOVAs, (B) and (D) are from non-parametric permutation ANOVAs. Upper case letters above bars (C, D) indicate significance for the x-axis
treatment; lower case letters above bars (B) indicate significance for the interaction between lichen species composition and substrate. Pair-wise comparisons are
listed in Table S1. Baseline conditions were autoclaved substrate, sieved mixed species, 2 cm substrate, and 2-day watering.
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add water based on substrate field capacity, and assess optimal
temperatures for arctic biocrusts.

Watering Frequency and Substrate

While substrate did not have an impact in experiments 1 and
3, we found that tundra soil declined less than crushed rock in
experiment 4, particularly as the interval between watering
increased. Water on crushed rock was not absorbed as rapidly
as on tundra soil, so lichens had a greater chance of longer supra-
saturation (Lange 2001). Lichens are poikilohydric organisms,
and many species tolerate extensive desiccation with few phys-
iological effects (Kranner et al. 2008; Green et al. 2018). How-
ever, high thallus water content hinders net photosynthesis for
numerous species by increasing CO2 diffusion resistance, with
maximum net photosynthesis occurring over a very small thallus
hydration range (Lange 2001). Many green algae lichens can
photosynthesize from dew or high humidity alone (Lange
et al. 1986). As species in our study were mostly green algal
lichens and naturally grow with low precipitation, frequent
watering (damp, 1 day) with humidity 65–75% in the growth
chamber, likely suprasaturated the thallus and decreased net
photosynthesis, which negatively affected lichen survival.

Lichens with 10-day watering may not have declined in cover
as quickly since they are physiologically inactive when dry so
would have had fewer periods of activity (Kranner
et al. 2008). Lichen with 3-day watering and tundra soil
increased cover; we hypothesize that this treatment had adequate
water and humidity while also minimizing suprasaturation.

Despite the high relative growth rate observed in some lichen
growth chamber studies (e.g., Bidussi et al. 2013; Gauslaa
et al. 2016) and short-term survival documented in others
(Bjerke et al. 2002), we observed mostly declines in lichen sur-
vival and cover. Similarly, an investigation of the effect of ele-
vated growth chamber temperatures on Antarctic lichens found
detrimental to deadly impacts on the photobionts of two of the
three species studied (Colesie et al. 2018). These contradictions
reinforce the unique challenges arctic biocrust reclamation pre-
sents compared to better-studied dryland ecosystems, as well
as the opportunity for reclamation scientists to advance this field
through future growth chamber studies.
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