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Abstract

Certain lichen epiphytes are restricted to old-growth forest stands with long ‘ecological continuity’, explained by i) niche specialism and
their dependence on microhabitats associated with old stands including veteran or senescent trees, and/or ii) dispersal limitation with prob-
abilities of colonization being relaxed over extended time periods. ‘Calicioid’ species are among the most important old-growth indicators,
yet they reproduce sexually via small spores that appear widely dispersed at ecological scales. This suggests that they should have a high level
of niche specialism compared to lichen epiphytes in general, explaining their role as old-growth indicators. However, comparisons of niche
specialism are challenging, and this study uses epiphytic, corticolous calicioid species as an appropriate test case. Having measured 20 vari-
ables that constrain the lichen epiphyte niche, these were collapsed into a ‘hypervolume’ representing the sampled environmental space
available for occupancy by lichens in Scotland as a study system. It was then possible to examine the occupancy of this hypervolume by
individual lichens (niche breadth), with the proportion/percent occupied used to estimate a niche specialism score. Consequently, epiphyte
calicioid species are confirmed to have a high degree of niche specialism compared to lichen epiphytes in general, and compared to other
old-growth indicators, with their niche position directed towards drier climates including locally sheltered microhabitats associated with

old-growth forest structure.
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Introduction

Niche breadth is a central topic in ecology (Devictor et al. 2010;
Slatyer et al. 2013; Sexton et al. 2017) and characterizes where spe-
cies might sit on the spectrum between niche specialist and gen-
eralist. Thus, in classic ecological models a species’ niche breadth
was expected to correspond to its relative commonness or rarity
and the consequent structure of communities, translated into
rank-abundance plots (Hutchinson 1957; Whittaker 1972).
However, comparison of niche breadth among different species
can be challenging when considering multiple individual species-
specific niche models. Factors selected into niche models (those
with the greatest explanatory power) may be contrasting, that is,
because species are constrained in their distribution or abundance
by different limiting effects. This has led to methods for inferring
specialization-generalization without reference to ecological
details, such as those based on patterns of spatial co-occurrence
(Fridley et al. 2007; Boulangeat et al. 2012). Alternatively, the
aim of this study was to compare niche breadth among different
lichen species by constructing a model that encapsulates key con-
straints to lichens in general terms, being relevant to individual
species though also broadly defensible when comparing all species
in a habitat. The approach focuses on woodland epiphytes, using
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ordination to collapse gradients relating to moisture and
temperature, light, and trophic status into a hypervolume
(cf. Hutchinson 1957; Whittaker 1972; Carnes & Slade 1982;
Devictor et al. 2010; Blonder 2018), and with the proportion/percent
of the hypervolume that is occupied by a given species (niche
breadth) used to estimate a niche specialism score. It is tried
here for an ecological guild (calicioid species) that has been
repeatedly flagged as an indicator of old-growth forest structure
and asks whether this status is consistent with high niche
specialism.

Many studies have reported the spatial association of certain
lichen species with old-growth forest stands (Tibell 1992;
Goward 1994; Selva 1994), including ancient but cultural wooded
landscapes (Rose 1974, 1976). These lichen species are expected to
be sensitive to two processes that can explain their association
with old-growth and their referral under the rubric of ‘ecological
continuity’ (Coppins & Coppins 2002). First, niche specialism,
with some lichens requiring structures (e.g. canopy gaps) or
microhabitats skewed towards old-growth stands, such as on vet-
eran and senescent trees (Nascimbene et al. 2009; Fritz &
Heilmann-Clausen 2010). Second, dispersal limitation, with
some lichens restricted to old-growth stands because low prob-
abilities of colonization (Dettki et al. 2000; Sillett et al. 2000)
are relaxed over time. Lichen epiphytes dependent on ecological
continuity, and thus associated with old-growth, have been devel-
oped as regional indices (e.g. Nitare 2000; Coppins & Coppins
2002) which, for the highly deforested temperate biome
(Hannah et al. 1994, 1995), provide a strong proxy for habitat
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conservation value. Although early work scoping ecological con-
tinuity or old-growth lichen indicators was based on qualitative or
semi-quantitative field interpretation, recent statistical tests
appear to confirm their significance (Whittet & Ellis 2013;
Dymytrova et al. 2018; Miller et al. 2020). In particular, longitu-
dinal monitoring (Ockjnger et al. 2005; Belinchon et al. 2017),
spatial pattern analysis (Gu et al. 2001; Williams & Ellis 2018)
and population genetics (Walser 2004; Jiriado et al. 2011) sup-
port a limited dispersal of these indicators over ecological
timescales.

Lichens and some non-lichenized fungi predominantly with
mazaedia and often stalked apothecia (‘stubble’ or ‘pin-head’
lichens), while being polyphyletic (Wedin & Tibell 1996; Prieto
et al. 2013), are recognized by lichen ecologists as being convergent
in a ‘calicioid’ trait group, including genera such as Calicium and
Chaenotheca (lichenized) or Microcalicium (non-lichenized).
Calicioid species have been documented as having among the
strongest spatial association with old-growth forest stands (Holien
1996; Selva 2003; Nascimbene et al. 2010; Goward & Arsenault
2018; Malicek et al. 2019). Nevertheless, calicioid species have rela-
tively small spores, typically <20 um (fig. 11 in Tibell (1994)),
which appear to be comparatively widely dispersed at biogeograph-
ical and ecological scales (Tibell 1994; Kruys & Jonsson 1997).
Consequently, calicioids would be expected to demonstrate a com-
paratively high niche specialism, since this would be the primary
mechanism explaining their status as old-growth indicators.
Calicioid species should therefore be more niche specialist than
lichen epiphytes in general, and also more specialist than other
lichen indicators of ecological continuity, a group which, overall,
will include a proportion of species more constrained by dispersal-
limitation relative to their niche specialism.

This study explored the use of the hypervolume approach,
described above, to test the hypothesis that epiphytic and cortico-
lous calicioid species are more niche specialist relative to other
epiphytes. If this turns out not to be the case, it will be necessary
to revisit assumptions about the dispersal capacity of these small-
spored species, and/or invoke establishment constraints that
might be explained through high specificity or selectivity towards
lichen photobionts (cf. Tibell 2001; Tibell & Beck 2001; Yahr et al.
2004).

Methods
Field and environmental sampling

Field sampling is described in detail by Ellis et al. (2015) and
summarized here. Twenty ancient woodland sites were selected
(cf. Roberts et al. 1992; Whittet et al. 2015), positioned across a
longitudinal climate gradient from oceanic western to relatively
continental north-eastern Scotland, and 10 equidistant points
were positioned within the boundary of each site. Points were vis-
ited in random order, to accumulate a list of contrasting tree spe-
cies in contrasting size categories that were sampled for their
epiphytes in a way that captured site heterogeneity (maximizing
tree species and tree size differences). Sampling used quadrats
of 4x6cm, 6x9cm or 9x12cm (depending on tree size),
split into sub-units to record species frequency of occurrence
per quadrat, with a minimum of four quadrats per tree at random
heights between 30 and 200 cm for each cardinal aspect (north,
south, east and west), and adding intermediate aspects as tree
size increased (> 75 cm dbh). Accordingly, a total of 1013 quad-
rats was sampled from 250 individual trees across the 20 sites.
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Field sampled quadrats were each accompanied by 20 environ-
mental variables, the selection of which was based on a literature
review that had examined the constraints explaining lichen epi-
phyte distribution and community structure (Ellis 2012), as follows:

Macroclimate. The growth of lichens is sensitive to regional
gradients in the availability of moisture and temperature
(Boucher & Nash 1990; Gauslaa et al. 2007; Ellis et al. 2017),
including their susceptibility to, and recovery from, cold tempera-
tures (Solhaug et al. 2018). Consequently, lichen distributions are
often aggregated into different bioclimatic regimes (Coppins 1976;
Ellis et al. 2007), which correlate with an underlying growth
response to climate (Braidwood & Ellis 2012). Macroclimatic vari-
ables were therefore mean relative humidity, totals for annual pre-
cipitation and precipitation during the driest quarter, mean
annual and minimum temperatures, all for the 30-year period
1981-2010, interpolated from instrumental measurements at a
1 km grid-scale (Hollis et al. 2019).

Stand-scale microclimate. The macroclimate is modified by the
topographic position of a stand, including features that can con-
trol lichen water balance, considering that lichens are both poiki-
lohydric and only physiologically active when hydrated, enabling
daytime photosynthesis (Palmqvist & Sundberg 2000; Palmqvist
et al. 2010) and nocturnal stress recovery and tissue growth
(Bidussi et al. 2013; Alam et al. 2015). Stand-scale variables
were therefore a measure of physical exposure related to the dry-
ing effect of wind (detailed aspect method of scoring, DAMS:
Quine & White 1994; Sudrez et al. 1999), distance to the nearest
watercourse, which has been shown to control and explain lichen
occurrence/abundance (Belinchén et al. 2009; Rambo 2010; Stehn
et al. 2013) and growth (Rambo 2010; Ellis 2020), and a heat load
index based on latitude, slope and aspect (McCune & Keon 2002;
McCune 2007).

Tree-scale microclimate. Again, in relation to thallus hydrol-
ogy, the macroclimate and stand-scale effects will be modified
by tree-scale microclimates, and variables were therefore the
height on the tree bole, which affects the growth of individual spe-
cies (Antoine & McCune 2004; Merinero et al. 2015) and the
structure of epiphyte communities (Kenkel & Bradfield 1986;
Bates 1992; McCune et al. 2000), likewise the angle of bole lean
(Kenkel & Bradfield 1986; Bates 1992; McCune et al. 2000;
Doering & Coxson 2010), as well as bark furrow depth and
cover of bryophytes which are both important in regulating lichen
establishment and growth (Sillett & McCune 1998; Colesie et al.
2012; Rubio-Salcedo et al. 2015).

Light availability. The growth of lichens is physiologically con-
strained by light availability (Palmqvist & Sundberg 2000;
Palmqpvist et al. 2010), though species are differently adapted to
light and shade (Demmig-Adams et al. 1990; Manrique et al.
1993; Gauslaa & Solhaug 1996). Variables were therefore a meas-
ure of direct radiation based on latitude, slope and aspect
(McCune & Keon 2002; McCune 2007), indicative of below can-
opy light transmission (Lieffers et al. 1999; Angelini ef al. 2015)
the basal area of the five nearest surrounding trees to approximate
structural density, canopy openness measured around a sampled
tree using a densiometer (Lemmon 1956; Englund et al. 2000;
Paletto & Tosi 2009), and the aspect of a quadrat on the tree
bole, folded around a north-south axis (cf. McCune & Keon
2002; McCune 2007).

Physical-chemical conditions. The physical and chemical bark
microhabitat has been shown to control occurrence and abun-
dance of lichen species and patterns of community composition
(Gauslaa 1985; Bates 1992), and variables were therefore bark
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pH and conductivity (Kuusinen 1996; Jiiriado et al. 2009; Mezaka
et al. 2012), as well as bark density and water holding capacity
(Loppi & Frati 2004; Mistry & Beradi 2005; Kubiak & Osyczka
2020).

For detailed methods regarding measurement of environmen-
tal variables, see Ellis et al. (2015).

Statistical analysis

Analysis was based on the Hutchinsonian niche model
(cf. Hutchinson 1957; Blonder 2018), which imagines a circum-
scribed environmental space or ‘hypervolume’ within which a
species can complete its life cycle (establishment, growth and sur-
vival, reproduction). This volume is bounded by the species pos-
ition along multiple axes, with the axes being environmental
variables that limit the consequent occurrence or abundance of
a species, and scaling to community composition.

To quantify the hypervolume concept, two ordination
approaches were tested. First, a principal components analysis
(PCA) was used to summarize covariance among the 20 selected
environmental variables. PCA was performed using the prcomp
package in R v. 4 (R Development Core Team 2020) with vari-
ables centred and scaled to unit variance. PCA assumes linearity
among the environmental covariables. Second, non-metric multi-
dimensional scaling (NMDS) was used to summarize difference
among the samples with respect to environmental variables that
were first standardized to avoid negatives (e.g. for minimum tem-
peratures, or angle of bole lean). NMDS better handles non-
linearity among environmental covariables (McCune & Grace
2002). NMDS was performed using PC-Ord v. 6 (McCune &
Mefford 2011), based on a Bray-Curtis distance matrix; search
for an optimized solution was for a maximum of six ordination
axes based on 500 runs with the observed data (step length =
0.2, stability criterion = 0.00001 with 100 runs to estimate stabil-
ity), and with the significance of the optimum solution estimated
against 1000 runs with randomized data.
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Selecting the ordination (PCA or NMDS) that yielded the
greatest variation explained for the lowest number of axes, the
convex hull for all samples in ordination space was calculated
using the geometry package in R v. 4 (R Development Core
Team 2020), approximating the hypervolume of sampled environ-
mental space available for species occurrence. Convex hulls relat-
ing particularly to each species niche were then calculated using
the ordination scores for the samples within which a species
occurred. Mathematically, this could be achieved for all epiphyte
species with occurrences > the number of relevant ordination axes
plus one, that is the minimum number of points required to cal-
culate a simplex; in practice, the method was applied only to spe-
cies with > 5 occurrences. The environmental space circumscribed
by the samples within which a species occurred defined its niche
breadth. Niche specialism was subsequently estimated by consid-
ering niche breadth relative to the hypervolume of sampled envir-
onmental space, that is, dividing the convex hull of the occupied
samples by the convex hull for all samples, and multiplying by
100 to create a niche specialism score. Note that the lower the
niche specialism score, the narrower the niche breadth with
respect to sampled environmental space, and the higher the
niche specialism.

Given this approach, it was important to test whether a species
niche specialism was consistent with a deterministic niche model.
In contrast, a neutral model (Hubbell 2001; Etienne & Alonso
2007) would predict that the number of occurrences, and there-
fore the extent to which a species is calculated to be a niche spe-
cialist or generalist, would scale with a process of random
selection given the species abundance in a regional species pool.
Niche specialists could therefore be identified as those with a
niche specialism exceeding that of a null taxon with equivalent
occurrence. Accordingly, null taxa were constructed at different
occurrence levels, being randomly assigned to the samples in
environmental space. Niche specialism scores were calculated
for null taxa, repeated 10 000 times for each different occurrence
level. Species with deterministic niches were identified in a one-
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Fig. 1. A, comparison of environmental variance explained with the number of ordination axes for alternative methods of PCA and NMDS. B, comparison of a
species calculated niche specialism (circles), with thresholds for niche specialism based on randomization for a given number of occurrences, at the 5th to
95th (solid lines) and 2.5th to 97.5th percentiles (dashed lines). Circles below the 95th percentile show species with niche specialism exceeding null expectation

for a one-tailed test (P<0.05).
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tailed test as those with a niche specialism score exceeding the 5th
percentile of their null taxa with equivalent occurrence (P < 0.05).

Species passing the null model test were grouped as follows: i)
all lichens excluding ecological continuity indicator species rele-
vant to the study area (Coppins & Coppins 2002) and by default
excluding calicioid species, ii) ecological continuity indicator spe-
cies, excluding calicioid species, iii) broadly defined calicioid spe-
cies including fruticose lichens such as Sphaerophorus globosus
(Huds.) Vain., and iv) calicioids including only the pin-head
morphology. The niche specialism scores were compared among
groups by resampling their component species with replacements
(10 000 times) to calculate their bootstrapped means, plotted as
boxplots.

Furthermore, to aid interpretation of niche constraints, the
mean (weighted average) position of calicioid species was calcu-
lated along individual ordination axes for the samples in which
they occurred, and plotted into the sampled environmental space,
while ordination axes were interpreted through Spearman’s rank
correlation with the 20 environmental variables.

Results

Analysis of the 20 environmental variables by PCA suggested that
a large number of axes would be required to adequately represent
environmental variation (15 axes to explain > 95%), while NMDS
identified a statistically significant (P <0.001) optimum solution
with three axes (stress =18.96, instability < 0.00001). The three
NMDS axes explained 73.8% of environmental variation, while
nine PCA axes would be required for a comparable result
(Fig. 1A). NMDS was therefore adopted as a parsimonious
method that summarized non-linear relationships among the
environmental variables.

Of an initial 294 fully identified species sampled as epiphytes
(Ellis et al. 2015), there were 183 with > 5 occurrences. Of these,
113 (62%) passed the null model test for niche specialism
(Fig. 1B), including 30 lichens assumed to be indicators of eco-
logical continuity (Coppins & Coppins 2002), plus an additional
six calicioid species: Calicium salicinum Pers., C. viride Pers.,
Chaenotheca ferruginea (Turner ex Sm.) Mig., Ch. trichialis
(Ach.) Th. Fr., Microcalicium disseminatum (Ach.) Vain. and
Sphaerophorus globosus. When the mean scores for niche special-
ism were bootstrapped, it was clear that indicators of ecological
continuity are more niche specialist than lichen epiphytes in gen-
eral (Fig. 2). When including the fruticose Sphaerophorus globo-
sus, the calicioid species had similar niche specialism to other
ecological continuity indicators, but when restricting to pin-head
calicioids there was a further shift towards higher levels of niche
specialism than other ecological continuity indicators.

Niche position could be interpreted alongside niche specialism
by considering how calicioid species plot into environmental
ordination space (Fig. 3), and the relationship of ordination axes
with environmental variables (Table 1). Thus, Sphaerophorus
globosus appeared to occur under higher moisture conditions
than the pin-head calicioids, which were closely grouped towards
negative axis one scores representing drier and cooler climates,
well-lit stand positions, and sheltered microhabitats (e.g. deeper
bark furrows), being conditions that strongly contrasted with
bryophyte-dominated communities, for example. However, there
was wider spread in niche position encompassing positive and
negative scores for axis two, representing differences between spe-
cies tending to occur on a relatively more acidic (Chaenotheca fer-
ruginea, Microcalicium disseminatum) or a less acidic (Calicium
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Fig. 2. Bootstrapped mean of niche specialism scores for four different lichen groups.
Boxplots show the median (line), 25th to 75th percentiles (box), 10th to 90th percen-
tiles (whiskers), and 5th and 95th outliers (symbols). Note that the lower the niche
specialism score, the narrower the niche breadth with respect to sampled environ-
mental space, and the higher the niche specialism.

viride, C. salicinum, Chaenotheca trichialis) bark substratum.
Axis three was most strongly related to tree bole aspect, though
without a clear pattern in niche position among the different cali-
cioids (data not shown).

Discussion

Comparison of niche breadth, to establish whether species have
specialist or generalist niches, poses a series of conceptual and
methodological challenges. This study attempted a hypervolume
approach to estimate the niche specialism of lichens, with cali-
cioid species as a test case, since these are putative old-growth
indicators (Holien 1996; Selva 2003; Nascimbene et al. 2010;
Goward & Arsenault 2018; Malicek et al. 2019). It used ordination
to construct a hypervolume (Carnes & Slade 1982; Devictor et al.
2010) that aimed to represent the environmental space available
for lichen epiphytes within the study area. Niche specialism was
subsequently estimated as the proportion/percent of environmen-
tal space that is occupied by different species, including calicioids.
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Fig. 3. Plot for two NMDS ordination axes (points = samples), with the mean niche point of calicioid species positioned into the sampled environmental space (cf.
Table 1). 1= Microcalicium disseminatum, 2 = Chaenotheca ferruginea, 3 = Calicium salicinum, 4 = Calicium viride, 5= Chaenotheca trichialis, 6 = Sphaeorophorus glo-
bosus. Symbol size shows the frequency of bryophytes as a proxy for microhabitat conditions linked to community structure. In colour online.

The validity of the approach depends on a series of caveats out-
lined below, and which form targets for methodological
improvement.

First, there may be unsampled environmental space (the
hypervolume may be too small), and/or species occupancy may
be under sampled (niche breadth may be truncated). The extent
of these problems depends on the sampling design. Here, the
sampling sought to capture environmental heterogeneity for
ancient mixed temperate woodlands (between and within sites,
between and within trees), positioned across a steep climatic gra-
dient, while aiming for sufficient effort to recover an adequate
representation of each species’ niche based on a structured ran-
dom sampling. The focus on the calicioid test case is therefore
context specific (cf. Saetersdal et al. 2005), relevant only to the
limits of the sampling regime. Second, the use of convex hulls
to quantify niche breadth makes a set of simplifying assumptions,
principally that the outer limits of a species occurrence circum-
scribe the breadth of its deterministic realized niche; thus i) it
reconstructs niche topography without bimodal or more complex
responses (Austin & Smith 1989; Smart et al. 2010), and ii) it con-
siders empty samples (missing occurrences) within the boundar-
ies of the niche as unoccupied niche space, for example because of
dispersal limitation (Pulliam 2000; Wild & Gagnon 2005), though
not accounting for other stochastic processes that could extend
niche breadth, such as mass effects (Pulliam 2000; Warren et al.
2012). Third, the choice of relevant environmental variables is
critically important, ensuring a link to ecological performance
(establishment, growth and survival, reproduction) which will
ultimately determine the sampled patterns of epiphyte occur-
rence. The choice for each of the environmental variables is out-
lined in detail as part of the Methods (see cited literature in ‘Field
and environmental sampling’, above); they captured the key con-
straints of moisture availability at contrasting scales, temperature,
light availability, and trophic status with respect to bark chemis-
try. Fourth, because niche breadth measured with a convex hull
will scale to the number of occurrences, evidence for deterministic
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niche specialism needed to be tested against null expectation and
c. 38% of species failed to meet a significance threshold of 0.05
(including two calicioid species: Calicium parvum Tibell and
Chaenotheca chrysocephala (Ach.) Th. Fr.). This could be for vari-
ous reasons, including weak initial specification of environmental
variables that determine the lichen epiphyte niche (see cited lit-
erature in ‘Field and environmental sampling’, above), if irrelevant
or redundant variables are included, and with possible improve-
ment by considering a weighting for variable importance, or vari-
able interactions. A further reason may be redundancy among the
lichen species. That is, if the niche position of lichen epiphytes is
broadly overlapping so that different species can replace one
another stochastically in an epiphyte community, consequently
a measured volume could be large relative to the number of
occurrences. These caveats notwithstanding, sufficient species
appeared to pass the null model test to cautiously estimate the
comparative niche specialism of calicioid epiphytes.

The niche specialism of calicioid epiphytes depended on
whether the guild included the fruticose Sphaeorophorus globosus,
appearing more highly specialized than other ecological continu-
ity indicators when restricted to pin-head calicioids only (exclud-
ing Sphaerophorus). This is despite the morphological differences
that exist among the pin-heads themselves, being lichenized or
non-lichenized, or contrasting in the form of their stalk, capit-
ulum and mazaedium etc. (Van Dort & Horvers 2021). The
results are therefore consistent with previous studies that have
highlighted the specialist niche requirements of calicioid species,
which when lichenized will require uptake of ambient moisture
for photosynthetic activation (Palmqvist & Sundberg 2000;
Palmqvist et al. 2010) except for pin-heads with an avoidance
of direct wetting so that their occurrence is often skewed to
drier climates and microhabitats comprising dry bark surfaces
in furrows, crevices and overhangs (Van Dort & Horvers 2021).
Thus, niche specialism combines with niche position (cf. Vela
Diaz et al. 2020), which has an association with older trees, for
example where these are characterized by deeply fissured bark
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Table 1. Interpretation of NMDS ordination by correlating axis scores for samples against respective environmental variables; axis scores were used to define the
convex hull for the sampled environmental space (hypervolume), and for epiphyte niche breadth (samples within which a species occurred). Statistically significant

correlations are shown in bold, with the strongest relationships (r>0.7) shaded.

Spearman’s rank coefficient; statistical significance (P)

Scale of Analysis

Environmental variable NMDS 1

NMDS 2 NMDS 3

Macroclimate

Annual precipitation r=0.727; P<0.0001

=-—0.521; P<0.0001 r=-0.0169; P=0.591

Precipitation driest quarter r=0.760; P<0.0001

r=-—0.424; P<0.0001 r=0.012; P=0.692

Relative humidity r=0.793; P<0.0001

r=-0.191; P<0.0001 r=0.059; P=0.062

Mean annual temperature r=0.583; P<0.0001

r=0.114; P=0.0003 r=0.081; P=0.01

Mean minimum temperature r=0.798; P<0.0001

r=0.077; P=0.014 r=0.07; P=0.025

Stand-scale microclimate

Exposure r=0.344; P<0.0001

r=-—0.486; P<0.0001 r=0.081; P=0.01

Distance to watercourse =—0.149; P<0.0001

=—0.205; P<0.0001 r=0.079; P=0.012

Heat load index r=0.136; P <0.0001

r=-0.007; P=0.829 r=-0.024; P=0.437

Tree-scale microclimate

Height on bole r=—0.063; P=0.044

r=0.029; P=0.354 r=0.074; P=0.019

Angle of lean r=0.057; P=0.068

r=0.044; P=0.161 =-0.055; P=0.08

Furrow depth r=-0.249; P<0.0001

r=-0.051; P=0.102 r=-0.01; P=0.759

Bryophyte cover r=0.678; P<0.0001

r=0.401; P<0.0001 r=-0.13; P<0.0001

Light availability

Direct radiation r=0.293; P<0.0001

=-0.152; P<0.0001 r=-0.059; P=0.06

Stand density r=-0.058; P=0.066

r=0.093; P=0.003 r=-0.037; P=0.234

Canopy openness r=-—0.252; P<0.0001

r=-—0.146; P<0.0001 r=0.06; P=0.07

Aspect on bole =-0.025; P=0.427

=—0.068; P=0.03 r=0.893; P<0.0001

Physical-chemical condition

Bark pH r=-0.009; P=0.765

r=0.727; P<0.0001 r=0.214; P<0.0001

Bark conductivity r=0.003; P=0.916

r=—0.718; P<0.0001 r=-—0.233; P<0.0001

Bark density r=0.137; P<0.0001

=—0.145; P<0.0001 r=-0.021; P=0.512

Bark water capacity r=-0.007; P=0.835

r=0.289; P<0.0001 r=0.039; P=0.212

(cf. Ellis 2012; Ellis et al. 2015; Van Dort & Horvers 2021).
Extending this consideration, there is also evidence of community
succession among lichen epiphytes as trees age (Lewis & Ellis
2010; Ellis & Ellis 2013) that possibly includes a mid-age peak
in species richness, while pin-heads appear to occupy a later
stage in epiphyte community succession as species richness,
density and inter-thalline competition decline.

The results here add support to the role of pin-head calicioids
in particular as indicators of ecological continuity and old-growth
status owing to their dependency on a limited set of realized niche
conditions (specific climate or microclimate, bark condition, low
competition) being associated with microhabitats found especially
on veteran or senescent trees. Consequently, there is no reason to
invoke alternative explanations for the role of calicioids as old-
growth indicators. There is currently a lack of strong evidence
to suggest that calicioid species are dispersal-limited (Wiersma
& McMullin 2022). Furthermore, it has been proposed that pro-
duction of mazaedia and loose spore mass facilitates dispersal
by animals, including birds (Johansson et al. 2021), providing
effective long-distance dispersal at ecological scales (Tibell 1994;

https://doi.org/10.1017/50024282922000330 Published online by Cambridge University Press

Rikkinen 2003; Prieto et al. 2013). Instead, calicioid diversity
has been associated with microhabitat heterogeneity of old-
growth stands, rather than its temporal continuity per se (Kruys
& Jonsson 1997; Lohmus & Lohmus 2011), with this diversity
extending beyond the few corticolous species examined here
when considering epixylic species accumulated onto old-growth
deadwood volume and structure (Kuusinen & Siitonen 1998;
Lohmus & Lohmus 2011; Goward & Arsenault 2018).
Nevertheless, because the niche position of calicioid species is
centred on old-growth microhabitats that are now rare in nature,
arguably population sizes and consequent spore densities may
also be low, thus acting through meta-population processes (cf.
Hanski 1999, 2002) to restrict their wider dispersal (and abun-
dance) in the landscape. However, this meta-population con-
straint is potentially weakened by the high fecundity (spore
production) of calicioid species (Tibell 1994). With respect to
the potential effect of photobiont specificity and selectivity,
although photobiont selectivity has been suggested as a constraint
to the establishment of certain cyanolichens (Rikkinen et al. 2002;
Fedrowitz et al. 2011; Belinchon et al. 2015), experiments on
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niche specialist chlorolichens do not convincingly report the same
pattern (Svensson et al. 2016).

In summary, calicioid species have been widely documented as
ecological continuity old-growth indicators and they appear to
provide an example of a trait group that has high niche specialism
relative to other lichen epiphytes, and a niche position towards
specific microhabitats associated with veteran and senescent
trees. The hypervolume approach tried here is consistent with
and strengthens evidence that calicioid epiphytes provide exam-
ples of old-growth indicators strongly determined by niche spe-
cialism rather than dispersal limitation. The hypervolume
approach needs further testing and method development, though
in principle it could also be used to estimate the degree to which
species are dispersal-limited, by comparing the proportion of
samples falling within the boundary of a species niche that is
occupied compared to unoccupied, giving potential for widely
dispersed species to occupy a greater proportion of suitable and
available niche space.
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