Phylogeography of Ramalina farinacea (lichenized fungi, Ascomycota) in the Mediterranean Basin, Europe, and Macaronesia

Moya P., Garrido-Benavent I., Chiva S., Pérez-Ortega S., Blázquez M., Pazos T., Hamel T., Myllys L., Tønsberg T., Esseen P.-A., Carrasco P. & Barreno E.
15(3): 310 [18 p.]
Ramalina farinacea is an epiphytic lichen-forming fungus with a broad geographic distribution, especially in the Northern Hemisphere. In the eighties of the last century, it was hypothesized that R. farinacea had originated in the Macaronesian–Mediterranean region, with the Canary Islands as its probable southernmost limit, and thereafter it would have increased its distribution area. In order to explore the phylogeography of this emblematic lichen, we analyzed 120 thalli of R. farinacea collected in 38 localities distributed in temperate and boreal Europe, the Western Mediterranean Basin, and several Macaronesian archipelagos in the Atlantic Ocean. Data from two nuclear markers (nrITS and uid70) of the mycobiont were obtained to calculate genetic diversity indices to infer the phylogenies and haplotype networks and to investigate population structure. In addition, dating analysis was conducted to provide a valuable hypothesis of the timing of the origin and diversification of R. farinacea and its close allies. Our results highlight that phylogenetic species circumscription in the “Ramalina farinacea group” is complex and suggests that incomplete lineage sorting is at the base of conflicting phylogenetic signals. The existence of a high number of haplotypes restricted to the Macaronesian region, together with the diversification of R. farinacea in the Pleistocene, suggests that this species and its closest relatives originated during relatively recent geological times and then expanded its range to higher latitudes. However, our data cannot rule out whether the species originated from the Macaronesian archipelagos exclusively or also from the Mediterranean Basin. In conclusion, the present work provides a valuable biogeographical hypothesis for disentangling the evolution of this epiphytic lichen in space and time. Keywords: colonization; diversity; genetics; incomplete lineage sorting; Pleistocene.
Friday, 24 February 2023 09:14