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Abstract: Ramalina farinacea is a widely distributed epiphytic lichen from the Macaronesian archipela-
gos to Mediterranean and Boreal Europe. Previous studies have indicated a specific association
between R. farinacea and Trebouxia microalgae species. Here, we examined the symbiotic interactions
in this lichen and its closest allies (the so-called “R. farinacea group”) across ten biogeographic subre-
gions, spanning diverse macroclimates, analyzing the climatic niche of the primary phycobionts, and
discussing the specificity of these associations across the studied area. The most common phycobionts
in the “R. farinacea group” were T. jamesii and T. lynnae, which showed a preference for continentality
and insularity, respectively. The Canarian endemic R. alisiosae associated exclusively with T. lynnae,
while the other Ramalina mycobionts interacted with both microalgae. The two phycobionts exhibited
extensive niche overlap in an area encompassing Mediterranean, temperate Europe, and Macarone-
sian localities. However, T. jamesii occurred in more diverse climate types, whereas T. lynnae preferred
warmer and more humid climates, often close to the sea, which could be related to its tolerance to
salinity. With the geographical perspective gained in this study, it was possible to show how the
association with different phycobionts may shape the ecological adaptation of lichen symbioses.

Keywords: Ascomycota; climatic niche; haplotype; lichenized fungi; Macaronesia; microalgae;
Trebouxia jamesii; Trebouxia lynnae

1. Introduction

The lichen-forming fungus Ramalina farinacea (L.) Ach. is an iconic member of the
family Ramalinaceae (Lecanorales, Ascomycota) [1] that develops pendant, whitish–greenish
fruticose thalli composed of slender thallus ramifications (i.e., laciniae), which usually
display well-developed asexual reproduction structures, i.e., soralia. These structures
consist of soredia, minute clusters of fungal hyphae enwrapping microalgal cells, dispersed
together by wind or animals [2,3]. Sexual reproduction involving meiotic spores produced
in fungal apothecia is, however, exceptionally rare in this lichen. Ramalina farinacea is
widely distributed across North America, Macaronesia, and Europe, from the climatically
mild Mediterranean Basin to the cooler Boreal region [4], showing remarkable ecological
versatility as it thrives in diverse habitats from tree trunks and branches in shaded decidu-
ous forests to isolated trees exposed to sun and wind, as well as hedgerows, scrublands,
rocks, and walls [5]. Although this lichen is relatively easily identifiable in the field, its
populations also show variability in morphology and chemical composition, producing
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various secondary metabolites [6]. That variability was the basis for the description of
the related species R. subfarinacea (Nyl. ex Cromb.) Nyl. and R. alisiosae by Pérez-Vargas
and Pérez-Ortega [7,8]. In a recent paper, Moya et al. [4] showed that all these species
together with an undescribed Ramalina sp. are indeed phylogenetically closely related, as
they likely evolved recently and therefore still represent a species complex, the so-called
“Ramalina farinacea group”. Indeed, phylogenetic analyses using a pair of genetic mark-
ers, including the fungal barcode nuclear ribosomal internal transcribed spacer (nrITS),
suggested incomplete lineage sorting and conflicting phylogenetic signal [4].

The work by Moya et al. [4] also studied the phylogeography of the fungal partners
(mycobionts) in the Ramalina farinacea group. In particular, they evaluated the hypothesis
proposed by Krog and Østhagen [9], posing an origin for R. farinacea in the Macaronesian–
Mediterranean region and its gradual geographic expansion to most temperate and Boreal
regions of the Northern Hemisphere, with the Canary Islands as its probable southernmost
limit in the Atlantic region. Aptroot and Schumm [10] have extended this boundary
to include Cape Verde, another Macaronesian archipelago south of the Canary Islands.
Preliminary phylogenetic studies by Del Campo et al. [11] and Molins et al. [12] had
identified several clades in the mycobiont phylogeny, some with specimens restricted to the
Iberian Peninsula or the Canary Islands, whereas at least one clade was found to be shared
among these two regions and California. Finally, Moya et al. [4] extended the sampling to
include other areas of the Mediterranean Basin and higher latitudes in Europe and found
a great number of haplotypes restricted to the Macaronesian region. Altogether, their
results suggest that these lichenized fungi probably originated in southern latitudes during
relatively recent geological times (Pleistocene) and then expanded north, thus supporting
the original hypothesis by Krog and Østhagen [9].

In recent decades, R. farinacea has also received considerable attention regarding the di-
versity and physiology of its associated microalgae (phycobionts) [12]. del Campo et al. [11]
and Moya et al. [13] have found that Trebouxia Puymaly diversity and the composition in
thalli of R. farinacea was strongly correlated with the geographic origin of the samples. Tre-
bouxia jamesii (Hildreth and Ahmadjian) Gärtner was the main primary phycobiont in thalli
from the Iberian Peninsula, while T. lynnae Barreno (former Trebouxia sp. TR9) was mainly
present in thalli from the Canary Islands and Madeira. Furthermore, Casano et al. [14] and
del Campo et al. [11] have demonstrated the coexistence of these two Trebouxia phycobionts
within a single lichen thallus through a combination of microscopic techniques, isolation in
axenic cultures, and molecular characterization [5,11]. Casano et al. [14] have found that
these two phycobionts exhibited distinct responses to abiotic stresses, and they speculated
that their concurrent presence in thalli is advantageous for the holobiont, a phenomenon
that has been observed in other lichens with wide distributions and ecologies [15–17]. So
far, no further studies have attempted to unveil the diversity of the associated Trebouxia in
R. farinacea from areas without the influence of the Mediterranean climate.

The present work provides a global picture of phycobiont diversity and mycobiont–
phycobiont interaction patterns in the R. farinacea group by considering an enlarged dataset
consisting of samples included in Moya et al. [4], newly collected thalli, as well as pub-
licly available sequence data in GenBank. Because previous studies have shown that
lichen-forming fungi tend to preferentially select photobiont lineages which are better
adapted to local environmental conditions [18–23], we will here test the following hypothe-
ses: (i) mycobionts in the R. farinacea group associate differentially with phycobionts in
Macaronesia and Mediterranean, temperate, and Boreal regions in Europe; and (ii) the
association with different phycobionts shapes the ecological distribution of the mycobionts.
In doing this, we will investigate the complexity of interactions among mycobiont and
phycobiont lineages, the degree of specificity across their geographic distributions [24–26],
and the climatic niche width of the primary phycobionts.
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2. Materials and Methods
2.1. Sampling, Pretreatment of the Samples, and DNA Extraction

The present study considered 469 thalli of the “Ramalina farinacea group”, following
the species concepts in Moya et al. [4]: 434 Ramalina farinacea, 25 Ramalina sp., 5 R. subfari-
nacea, and 5 R. alisiosae. Sampling included the Canary Islands and Madeira (Macaronesian
archipelagos), the Mediterranean Basin (Algeria, the Iberian and Italian peninsulas, and the
Balearic Islands), and central (France, Czech Republic, Austria, and Germany) and north-
ern (Estonia, Finland, Sweden, and Norway) Europe (Figure 1; Table S1). The sampling
localities can be grouped into ten biogeographic subregions, according to Rivas-Martínez
et al. [27] (Figure S1): Boreal, Atlantic Europe, Central Europe, Alpine, Mediterranean West
and Central Iberian Peninsula, Balearic-Catalonian-Provençal, Italo-Thyrrenian, Adriatic,
and Macaronesian. Fresh collected medium size thalli (up to 5 cm) were air-dried and then
stored at −20 ◦C. Before DNA extraction, the thalli were inspected under a stereomicro-
scope and cleaned with sterile water to avoid contamination by other fungi and epiphytic
microalgae. Fragments from different parts of each thallus were arbitrarily excised and
pooled together, put into an Eppendorf tube, and ground using a pestle and 400 µL of lysis
buffer of the DNeasy Plant Mini kit (Qiagen, Hilden, Germany). Total genomic DNA was
extracted and purified using the above kit following the manufacturer’s instructions, and
DNA was finally eluted in a volume of 50 µL.
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(n = 6), Mediterranean West (n = 11), Central (n = 167) Iberian Peninsula, Balearic-Catalonian-
Provençal (n = 35), Italo-Thyrrenian (n = 52), Adriatic (n = 14), and Macaronesian (n = 6). The map 
was created using the function map_data in the R package ggplot2 [28]. 
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used were nr-SSU-1780 [29] and ITS4T [30] for the phycobiont, and ITS1F [31] and ITS4a 
[32] for the mycobiont. PCR reactions were performed in a total volume of 25 µL using 
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PCR amplification program comprised an initial denaturation step at 94 °C for 2 min, 
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SensoQuest (Progen Scientific Ltd., Mexborough, UK). The PCR products were then 

Figure 1. (A) An epiphytic thallus of Ramalina farinacea collected in Bocairent (eastern Spain; photo:
IGB) showing soredia (yellow asterisks) and apothecia (red asterisk). (B) Georeferenced map show-
ing sampling localities of specimens of the “R. farinacea group” in the ten studied biogeographic
subregions: Boreal (n = 25), Atlantic Europe (n = 56), Central (n = 51) Europe, Alpine (n = 6), Mediter-
ranean West (n = 11), Central (n = 167) Iberian Peninsula, Balearic-Catalonian-Provençal (n = 35),
Italo-Thyrrenian (n = 52), Adriatic (n = 14), and Macaronesian (n = 6). The map was created using the
function map_data in the R package ggplot2 [28].

2.2. PCR Amplification and Sequencing

The barcode nrITS region was selected to assess the taxonomic identity of the primary
phycobiont as well as the mycobiont of the collected Ramalina thalli. The primers pairs used
were nr-SSU-1780 [29] and ITS4T [30] for the phycobiont, and ITS1F [31] and ITS4a [32]
for the mycobiont. PCR reactions were performed in a total volume of 25 µL using the
EmeraldAmp GT PCR Master Mix (Takara, Shiga, Japan), which required the addition of
the template DNA (1 µL), specific primers (1 µL each, 10 µM), and distilled water. The PCR
amplification program comprised an initial denaturation step at 94 ◦C for 2 min, followed
by 30 cycles at 94 ◦C for 30 s, 56 ◦C for 45 s, and 72 ◦C for 1 min, and a final elongation
step at 72 ◦C for 5 min. Amplifications were carried out on 96-well lab cyclers, SensoQuest
(Progen Scientific Ltd., Mexborough, UK). The PCR products were then electrophoresed in
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a 1% agarose gel and visualized using GelRed. The products were purified using the Gel
Band Purification Kit (GE Healthcare Life Science, Piscataway, NJ, USA). The amplified
PCR products were sequenced with an ABI 3730XL sequencer using the BigDye Terminator
3.1 Cycle Sequencing Kit (Applied Biosystems, Foster City, CA, USA) at StabVida (Lisbon,
Portugal). Raw electropherograms were manually checked, trimmed, and assembled using
SeqmanII v.5.07© (DnaStar Inc., Madison, WI, USA). GenBank accession numbers are listed
in bold in Table S1 (OR978676 to OR979068 for fungal nrITS and OR990615 to OR991088 for
Trebouxia nrITS).

2.3. Inference of Genealogical Relationships among Phycobiont Haplotypes

A phycobiont haplotype network for the R. farinacea group was built using an align-
ment of nrITS sequences. The DNA dataset was assembled with the sequences obtained in
the present study and those obtained from the specimens studied in Moya et al. [4] and
a selection of 58 sequences from GenBank (available at http://www.ncbi.nlm.nih.gov/;
accessed on 19 December 2023) (Table S1). The search criterion in GenBank was “Trebouxia
AND Ramalina farinacea”, and only those accessions with accompanying information about
sampling locality were considered [11,33–35]. The final sequence dataset consisted of
527 sequences, which were subsequently aligned with MAFFT v.7.308 [36,37] using the
algorithm FFT-NS-I x1000, the 200PAM/k = 2 scoring matrix, a gap open penalty of 1.5,
and an offset value of 0.123. The resulting nrITS alignment was manually optimized in
Geneious v.9.0.2 to trim the ends of longer sequences that included fragments of 18S–26S
ribosomal subunits. Genealogical relationships among haplotypes were then calculated
under a statistical parsimony framework in PopART v.1.7 [38] using the TCS method under
a 95% parsimony probability criterion, with gaps treated as a 5th character state [39–41].
Because the inference of haplotype networks is sensitive to ambiguous base calls and
missing data [42], the alignment was first pruned and reduced to 415 complete sequences.
The network was artistically edited in Adobe Illustrator 2023 and haplotypes were labelled
according to the above-mentioned ten biogeographic subregions [27].

2.4. Interaction Networks

We built bipartite interaction networks among phycobiont haplotypes of the R. farinacea
group and (a) different mycobionts, considering species circumscriptions in Moya et al. [4],
(b) mycobiont genetic clusters without any consideration of species boundaries, and
(c) biogeographic areas. Hierarchical Bayesian genetic clustering was performed using
fastbaps v.1.0.8 [43] in R v.4.3.1 [44]. The fast BAPS algorithm is based on applying the hier-
archical Bayesian clustering algorithm [45] to the problem of clustering genetic sequences
using the same likelihood as BAPS [46]. We employed optimized.baps for the Dirichlet prior
hyperparameter, as it generally outperforms other prior options [43], and the value of
k.init was set to 20. This analysis was seeded with a mycobiont nrITS alignment that was
built using newly obtained sequences (n = 395) and a selection from GenBank (n = 227)
with the following search criteria: “Ramalina farinacea AND internal”, “Ramalina alisiosae
AND internal”, and “Ramalina subfarinacea AND internal”. The final dataset consisted of
622 sequences, which were subsequently aligned with MAFFT v.7.308 [36,37] as described
above. The three bipartite networks were constructed using the function plotweb in the R
package bipartite [47].

2.5. Niche Hypervolumes

Because the two associated microalgae species corresponded to Trebouxia jamesii and
T. lynnae (see Section 3 below), we represented their climatic niche, along with those of the
four predominant haplotypes of T. jamesii, using the Hutchinsonian niche concept, defining
a species’ niche as an n-dimensional hypervolume with dimensions corresponding to envi-
ronmental variables [48]. The climatic hypervolumes were constructed using multivariate
kernel density estimation [49]. A PCA based on 19 bioclimatic variables was conducted [50],
and the first two axes, which explained 78% of the total variance, were selected to calculate
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hypervolumes for each species-level lineage and haplotype. The boundaries of the kernel
density estimates were delineated by the probability threshold using the 0.85 quantile
value. Hypervolume contours were plotted to project niche spaces based on 5000 random
background points, using the alphahull contour type with the alpha smoothing value set to
0.55. For ease of comprehension, differences in climatic variables (BIO1–BIO19) between
species were visualized by using box-plots. The significance of a difference between species
was tested by using Wilcoxon tests, and Bonferroni correction was applied to adjust the
p-value. All analyses were performed in R studio v.4.3.1 [44] using base functions and the
packages hypervolume [49] and alphahull [51].

2.6. Trebouxia jamesii Geographical Occurrence

The GenBank sequence data of the nrITS were considered to evaluate the global
distribution of Trebouxia jamesii and the taxonomical breadth of associated mycobionts.
BLASTn searches [52] against that database using complete or partial nrITS sequences
and following the search criterion “Trebouxia jamesii AND internal” were performed; con-
sequently, 1154 hits with a 99–100% of nucleotide identity were retrieved, and their cor-
responding sequences were downloaded. The final dataset also included four T. jamesii
haplotypes obtained in the present study and a representative sequence of a strain of
T. jamesii (FJ626733 UTEX 2233) located at the Culture Collection of Algae of the University
of Göttingen, Germany (SAG; available at https://sagdb.uni-goettingen.de/, accessed on
13 January 2024). Sequences of T. lynnae were also included in the dataset, and Asterochloris
mediterranea was used to root the phylogenetic tree. Then, a phylogeny was built to explore
within-species phylodiversity and to corroborate the validity of the taxonomic labels of
GenBank sequences using an alignment obtained with MAFFT employing the same param-
eter setting as above. The online version of RAxML-HPC2 hosted at the CIPRES Science
Gateway [53–55] was used to estimate phylogeny under a maximum likelihood (ML). The
analysis used the GTRGAMMA substitution model and one thousand rapid bootstrap
pseudoreplicates were conducted to evaluate nodal support. The resulting ML phyloge-
netic tree was visualized with the iTOL web tool [56], and Adobe Illustrator 2023 was
used for artwork. Tree nodes with bootstrap support (BS) values equal to or greater than
70% were regarded as significantly supported. Based on phylogenetic clade clustering,
only 211 sequences that matched with representative T. jamesii lineages were considered
for assessing the geographic distribution and range of associated fungal partners of this
microalga (Table S2) [11,12,33,35,57–67].

3. Results
3.1. Phycobiont Haplotype Network

The number of nrITS phycobiont haplotypes inferred from the newly sequenced
specimens and the selection of phycobiont sequences from the R. farinacea group from
GenBank was 52. The haplotype network showed the presence of two different Trebouxia
species, T. jamesii and T. lynnae, separated by at least 28 different nucleotides (Figure 2).
While T. lynnae occurred in the Macaronesian archipelagos and the European continent,
T. jamesii was restricted to continental localities and archipelagos in the Mediterranean Basin.
At the level of the 76 sampling localities considered in the present work, T. jamesii was the
only phycobiont in 60 of them, whereas T. lynnae was the sole microalga found in eight
localities in the Macaronesian archipelagos and the Iberian and Italian peninsulas (Table S3).
In the eight remaining localities, both phycobiont species co-existed; the predominance of
each microalga in these localities varied. Furthermore, considering the distance to the sea
from each sampling locality in the straight shortest line (kilometres), T. jamesii occurred in
both coastal and inland localities (up to 400 km), while T. lynnae preferred coastal localities,
with a maximum inland occurrence at 58 km in the locality of El Toro in the eastern Iberian
Peninsula (Figure S2).
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The two most frequent T. jamesii haplotypes, H3 and H9, had 21 other haplotypes
differing from them by a single nucleotide polymorphism (SNP) (Figure 2). Haplotypes H3
and H9 included specimens from all over the sampling area, except for the Macaronesian
archipelagos, while most of the other 21 connected haplotypes were individually repre-
sented by a single biogeographical subregion. Haplotypes H1 and H2 were also occurred
very frequently in nearly all considered localities. Central Europe and the Mediterranean
Central Iberian Peninsula were the two areas hosting a higher number of exclusive T. jamesii
haplotypes. On the other hand, T. lynnae co-occurred with T. jamesii in certain localities
of the Iberian Peninsula, Balearic Islands, and Italy, which corresponded to the follow-
ing biogeographic subregions: Atlantic Europe, Mediterranean Central Iberian Peninsula,
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Balearic-Catalonian-Provençal, and Italo-Thyrrenian. The latter two areas showed the
highest number of exclusive minor haplotypes.

3.2. fastbaps Cluster Assignment and Interaction Networks

The four species forming the R. farinacea group sensu Moya et al. [4] showed differ-
ential associations to phycobiont species and haplotypes (Figure 3A). Ramalina farinacea,
Ramalina sp., and R. subfarinacea were associated with both phycobionts, T. jamesii and
T. lynnae. Only R. alisiosae was found to be exclusively associated with T. lynnae in Mac-
aronesia (Figure 3A,C). Ramalina farinacea specimens (the most abundant in our assembled
dataset) formed the highest number of associations with different T. jamesii haplotypes.
From the phycobiont perspective, the two most-frequent T. jamesii haplotypes, H3 and H9,
interacted with all mycobiont species except for R. alisiosae. The less frequent T. jamesii
haplotypes (e.g., H6, H19, H20, etc.) only interacted with R. farinacea. At a geographical
level, we found that both microalgae were not exclusive to a single biogeographic subregion
(Figure 3C). Although T. jamesii was widespread in continental Europe and present in the
Balearic Islands, this species was not detected in Macaronesian samples of the R. farinacea
group. On the other hand, T. lynnae occurred predominantly in biogeographic areas that are
often characterized by displaying milder climatic conditions, e.g., Macaronesia, the eastern
Iberian Peninsula, and Balearic Islands, as well as localities in Atlantic Europe rather close
to the coast. The Trebouxia jamesii haplotypes H1, H3, and H9 were shown to be widespread
in subregions with markedly different climatic conditions, such as Boreal, Central Europe,
Atlantic Europe, and the climatically milder Mediterranean Basin. H3 was also found in
North California, which indicates a trans-Atlantic distribution.

Furthermore, the fast BAPS algorithm inferred eight clusters based on the mycobiont
nrITS dataset. Figure 3B shows interactions of these clusters (each represented by a Roman
number) with phycobiont nrITS haplotypes. For a better comprehension only clusters I, IV,
VI, VII, and VIII were represented (Figure 3B). This was because either the remaining clus-
ters derived from mycobiont GenBank nrITS sequences for which there was no information
about the associated phycobiont, or they were associated with phycobiont haplotypes con-
sisting of a single sequence/individual. Cluster VIII encompassed the bulk of R. farinacea
samples and was associated with the highest number of different T. jamesii haplotypes.
This cluster and the less frequent clusters I, IV, and VI were associated with both Trebouxia
microalgae. On the opposite side, cluster VII (corresponding to the Macaronesian samples
of R. alisiosae) was only associated with the three haplotypes of T. lynnae.

3.3. Climatic Niches

Two-dimensional hypervolumes for T. jamesii and T. lynnae and for the four most
abundant T. jamesii haplotypes were built, and PC1 and PC2 explained 78% of the variation
in climatic variables (Figure 4). Due to considerable differences in climatic traits among the
Macaronesian archipelagos, Mediterranean, and Northern Europe, the hypervolumes of
each species were split into two isolated areas, one broader than the other (Figure 4B,C). A
discernible gradient of climatic niches along PC2 was observed, explaining variations in
temperature and precipitation. Both species exhibited large niches overlapping (Figure 4B)
in an area representative of localities placed in the Mediterranean Basin and temperate
Europe (especially the Atlantic Europe and Central Europe biogeographic subregions).
Trebouxia jamesii occurred in more diverse climate types than T. lynnae, including an isolated
zone in the PCA representing the Boreal European region that shows a wide temperature
seasonality. On the other hand, T. lynnae showed preference for warmer and drier climates
(BIO1, 6, 16, 17, Wilcox tests p < 0.001 for all comparisons; Figure 5), and an isolated area
related to the Macaronesian region (Figure 4B). The hypervolumes of the most frequent
T. jamesii haplotypes H1, H2, H3, and H9 revealed rather negligible differences regarding
their climatic niches (Figure 4C). H1 and H3 emerged as the most widespread in the
analysis, with two distinct areas in the PCA, the smaller representing Boreal Europe.
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Figure 3. Interaction networks among the phycobionts Trebouxia jamesii and T. lynnae and (A) the
different mycobiont species in the “R. farinacea group”; (B) mycobiont genetic clusters delimited
with fastbaps (I, IV, VI, VII and VIII); and (C) biogeographic subregions spanning from Macaronesian
archipelagos to continental Europe. The width of the links is proportional to the number of specimens
forming the association. The size of rectangles depicting each phycobiont haplotype is proportional to
the number of obtained sequences; however, the sizes are not proportional among the three networks.
Roman numerals represent different genetic clusters inferred with fastbaps. The biogeographic
subregions [27] where specimens were collected are indicated as BE: Boreal Europe, CE: Central
Europe, NCal: North California, Unkn: Unknown; AE: Atlantic Europe, Adr: Adriatic, Alp: Alpine,
MWIP: Mediterranean West Iberian Peninsula, MCIP: Mediterranean Central Iberian Peninsula, IT:
Italo-Thyrrenian, BCP: Balearic-Catalonian-Provençal, Mac: Macaronesian.
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Figure 4. (A) Principal coordinate analysis (PCA) of the 19 BioClim variables: 1 = annual mean
temperature, 2 = mean diurnal range, 3 = isothermality, 4 = temperature seasonality, 5 = max
temperature of warmest month, 6 = min temperature of coldest month, 7 = temperature annual
range, 8 = mean temperature of wettest quarter, 9 = mean temperature of driest quarter, 10 = mean
temperature of warmest quarter, 11 = mean temperature of coldest quarter, 12 = annual precipitation,
13 = precipitation of wettest month, 14 = precipitation of driest month, 15 = precipitation seasonality,
16 = precipitation of wettest quarter, 17 = precipitation of driest quarter, 18 = precipitation of warmest
quarter, 19 = precipitation of coldest quarter. Climatic niche hypervolumes based on climatic PC1–
PC2 axes (78% of variation explained) for (B) phycobiont species T. jamesii and T. lynnae and for
(C) the four most abundant T. jamesii haplotypes.

3.4. Phycobiont Geographical Occurrence

A total of 220 sequences were clustered with T. jamesii (Table S2 and Figure S3). Ac-
cording to the information reported in GenBank accession metadata, T. jamesii has been
detected as a primary phycobiont in the following lichen species: Amandinea punctata, Anap-
tychia runcinata, Biatora sp., Candelariella vitellina, Evernia prunastri, Lecanographa amylacea,
Lecanora argentata, L. bicincta, L. chlarotera, L. frustulosa, L. glabrata, L. rupicola, L. sulphurea,
Lecidea roseotincta, Lecidella elaeochroma, Lepra amara, Loxospora elatina, Melanelixia fuliginosa,
M. glabratula, Myriolecis hagenii, Pertusaria amara, Pe. coccodes, Pe. leioplaca, Phlyctis argena,
Protoparmelia badia, Pr. montagnei, Pr. psarophana, Ramalina calicaris, R. capitata, R. farinacea,
R. fastigiata, R. fraxinea, R. lusitanica, R. pollinaria, R. pontica, Rhizocarpon geographicum, Rhi-
zoplaca sp., Tephromela atra, T. grumosa, and Umbilicaria grisea. According to the analyzed
GenBank metadata and our own dataset, the geographic distribution of T. jamesii would
encompass continental Europe, the British Islands, and islands in the Mediterranean Basin
(Austria, Crete, Crimean Peninsula, Czech Republic, Denmark, Estonia, Finland, France,
Germany, Greece, Italy, Norway, Poland, Portugal, Slovakia, Slovenia, Spain, Sweden,
United Kingdom, and Turkey); Peru in South America and the US (e.g., California) in North
America; Algeria in northern Africa; and India in Asia.

Barreno et al. [68] provided a comprehensive analysis of the geographic distribution of
T. lynnae (see Supplementary Table S2 in [68]), and according to their work and the results
here obtained, T. lynnae associates as a primary phycobiont with Lecanographa amylacea,
Protoparmelia montagnei, the Ramalina decipiens group, R. farinacea, R. fastigata, R. menziesii,
and an undescribed Ramalina sp. that belongs to the R. farinacea group. Geographically,
this microalga is distributed in continental Europe (Italy, Poland, Sweden, and Spain), the
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Balearic Islands, the Macaronesian archipelagos (Canary Islands and Cape Verde), the
island of Madeira, North America, and New Zealand.
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4. Discussion

Lichens are usually defined as paradigms of mutualistic symbioses, in which fun-
gal mycobionts, populations of photosynthetic microalgae, and other microorganisms
interact extracellularly and form morphologically and physiologically complex thalli (holo-
biomes) [69–73]. A question that still raises considerable curiosity among lichenologists is
whether (and why) a given lichenized microalga can be replaced by equally compatible
photobionts throughout the lichen’s distribution range [29,64,74–79]. This question has
been already addressed at various taxonomic, geographic and ecological scales, gener-
ating valuable data about the evolutionary history of lichen symbioses [20–22,33,80–83],
although, fungal–algal association patterns are still unknown for the vast majority of
lichens [73]. In the present study, we explored patterns of symbiont associations in species
of the R. farinacea group, which comprises R. subfarinacea, R. alisiosae, and Ramalina sp. [4],
through an exhaustive European and Macaronesian sampling of specimens spanning ten
biogeographic subregions with highly diverse climatic conditions.

Our results revealed that in the sampled regions, the most frequent phycobionts in
the R. farinacea group were Trebouxia jamesii and T. lynnae, two phylogenetically closely
related species [68]. Associations of closely related mycobionts with single or multiple
phycobiont(s) which are also among themselves phylogenetically closely related have been
already detected in other lichen symbioses, such as in the Macaronesian Ramalina decipiens
group [22], the amphitropically distributed Pseudephebe spp. [84], or the Mediterranean
and temperate epiphytic Parmelia sulcata and P. saxatilis groups [78]. A pattern is also
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observed at the level of the single mycobiont species in Ramalina menziesii in western
North America [33] and the Mediterranean Seirophora villosa [85]. These findings do not
necessarily mean that strict parallel diversification between lichenized fungi and their
green algal partners took place [29,86,87]. Instead, it might suggest that fungal–algal cell
recognition mechanisms are rather conserved and that only some interactions succeed
during the first lichenization steps. Furthermore, the composition of the “pool” of locally
available microalgae may exert a strong influence on the range of possible interactions as
well [88–91]. Singh et al. [35] have found R. farinacea in association only with T. jamesii in
the emblematic Białowieża Forest (Poland). This microalga was the most predominant in
the epiphytic lichen community, being present in at least 53% of the sampled species, most
of which were phylogenetically unrelated to R. farinacea and reproduced either sexually
or asexually. Certainly, future research is needed to understand the composition of the
“pool” of phycobionts in lichen communities thriving in Mediterranean regions, providing
context for our results showing the high diversity of haplotypes and interactions in the
R. farinacea group.

Insular vs. continental distribution of the phycobionts—We found that phycobiont associ-
ation is not balanced amongst the studied mycobionts. The Canarian R. alisiosae showed
a strict association with T. lynnae, whereas the other three mycobionts interacted with
both T. jamesii and T. lynnae. Although it might be questioned that the results are biased
by the low number of samples of R. alisiosae against those of R. farinacea, our results are
well in line with those of Blázquez et al. [22], who have used high-throughput sequencing
techniques to evaluate the phycobiont diversity in fifteen species of the Ramalina decipiens
group in the Canary Islands, Madeira, and Cape Verde. Although the authors did not find
remarkable differences in the identity of associated phycobionts, T. lynnae turned out to
be the most frequent microalgal partner. The less frequent phycobionts were T. jamesii,
T. aggregata, T. decolorans, T. australis, and some still undescribed Trebouxia species. The
R. decipiens group represents a putative radiation of endemic lichenized fungi inhabiting
the Macaronesian region, whose diversification does not seem to be linked with differ-
ing associations to phycobiont lineages [22]. The R. farinacea group likely diversified in
the Macaronesian–Mediterranean region as well [4,9]. The strict interaction of R. alisiosae
with T. lynnae is in line with the observation that this microalga is better adapted to the
environment conditions of oceanic islands than other phycobionts [12,14,18,22]. This is
further supported by the lack of T. jamesii lineages in the Macaronesian thalli of R. farinacea.
However, the phylogeny of the R. farinacea group is still not well resolved [4], and due to
the low number of studied R. alisiosae specimens we cannot assess whether phycobiont
switch could have contributed to diversification in our target species.

The relationship of the lichen R. farinacea with T. jamesii breaks in the Canary Islands,
Madeira, Sicily, and the Balearic Islands, where the mycobiont also (or only) associates
with T. lynnae. del Campo et al. [11] and Molins et al. [12] have previously suggested a
preference for continentality for T. jamesii and insularity for T. lynnae, which is further
evidenced by our ecological niche analysis. The preference for warmer and more humid
climates of T. lynnae aligns with the results of Casano et al. [14], who have demonstrated
that this microalga has better photosynthetic performance at higher temperature and
irradiance, while T. jamesii thrives at moderate temperature and irradiance. The better
physiological performance of T. lynnae under more oxidative conditions than T. jamesii may
reflect its greater capacity to undertake key metabolic adjustments, including increased
non-photochemical quenching, higher antioxidant protection, and the induction of repair
mechanisms [14]. These considerations align well with the previous physiological analyses
performed on axenic isolates in vitro of the two phycobionts.

Furthermore, Hinojosa-Vidal et al. [92] and Pérez-Rodrigo et al. [93] have studied the
effects of prolonged exposure to high salt concentrations on both T. lynnae and T. jamesii
species and have demonstrated the extraordinarily higher tolerance to osmotic and saline
stress of these two Trebouxia species compared to other microalga genera, such as Asterochlo-
ris and Chlorella. Their results suggest that the two Trebouxia phycobionts could cope with
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highly saline environments. Thus, a clear relationship was observed in the present study
between T. lynnae occurrence and the distance to the sea, which might be related to its
tolerance to salinity by water sprays and aerosols. Although T. jamesii also inhabits coastal
areas (which could also be explained by its tolerance to salinity), it is able to colonize inland
areas where T. lynnae does not spread into. Coastal zones usually display a warmer climate
due to the isothermal influence of the air’s relative humidity, and temperatures tend to
be more stable throughout the year. Contrary, inland zones experience more pronounced
seasonal thermal variations. It is likely that a combined effect of the influence of tempera-
ture and distance from the sea controls the distribution of these microalgae. Even within
thalli, the tolerances and physiological roles of photobionts vary; for example, two different
photobionts provide different polysaccharides under changing seawater immersion in the
marine lichen Lichina pygmaea [79]. Thus, it is a good example for testing hypotheses of how
complex photobiont communities might react to environmental changes in other lichen
symbioses, such as the cases studied in this work.

The multiplicity of haplotypes—Previous studies have already described a specific associ-
ation of T. jamesii and T. lynnae with R. farinacea based only on Iberian Peninsula and Canary
Islands specimens [11,12,14]. Here, we found that the association between R. farinacea and
T. jamesii spanned from 36 to 63 degrees of latitude, i.e., from northern Africa (Algeria) to
Central, Alpine, and Boreal regions in continental Europe. Some phycobiont haplotypes
were restricted to localities in Central and Boreal Europe (e.g., H1, H6, H19, and H35), which
might point towards fine-tuned fungal–algal interactions in these regions, assuming the
existence of “pools” of potentially better-adapted microalgae [88–90,94]. In fact, phycobiont
switches have been suggested for various epiphytic, terricolous, and saxicolous lichens
throughout their distribution ranges, often aligning with notable changes in environmental
conditions [18,20,61,81,84,85,94–96]. Alternatively, rare haplotypes might just represent the
genetic differentiation in the phycobiont by intrathalline somatic mutations, as suggested
for the microalgae occurring in the lichens Xanthoria parietina and Anaptychia ciliaris [97].
However, there were other T. jamesii haplotypes, such as H3 and H9, which showed a
widespread distribution across different biogeographic regions. This finding is not strange,
as identical nrITS phycobiont haplotypes have been reported in symbiosis with the same
mycobiont over large geographic distances, even encompassing temperate, north, and
south Polar Regions [84,94]. Given that R. farinacea reproduces mainly asexually using
soredia, in which both symbionts are dispersed together, we might hypothesize that this
lichen achieved its current broad geographic distribution by a successful first co-dispersion.
Secondly, once the soredium developed and hyphae grew further, the mycobiont would
have settled in that area by enwrapping those locally adapted phycobionts, i.e., those
that were found to be less frequent and more geographically restricted haplotypes. This
switch might have been achieved in at least two ways in R. farinacea: by the association
of fungal hyphae projecting from soredia with a new phycobiont, as suggested by Nelsen
and Gargas [86] in the strictly asexually reproducing Lepraria; alternatively, by a de novo
lichenization processes in which case the mycobiont would reproduce sexually through the
dispersion of meiotic spores. The number of different geographically adapted photobiont
haplotypes may also be influenced by the species richness of the lichen communities present
at a certain site. Events of photobiont switches are known to occur in lichens [17,23,29,65],
especially if mycobionts and photobionts present low specificity and selectivity toward
themselves, and thus many phycobionts are available for lichenization on growth substrates
(i.e., wood, rocks, soil).

The present study has extended our knowledge about the geographic distribution
and range of possible mycobiont partners of the two studied phycobionts. Trebouxia
lynnae associates with lichen fungi belonging to phylogenetically distant families and from
different areas of the planet, including continental Europe (Iberian Peninsula, Poland,
and Sweden), the Balearic Islands, Macaronesian archipelagos (Canary Islands, Madeira,
and Cape Verde), North America, and New Zealand [22,68]. Trebouxia jamesii is also a
cosmopolitan phycobiont, which associates with several lichenized fungi [35,98].
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5. Conclusions

In this research, we faced certain shortcomings when using the GenBank database to
retrieve phycobionts sequences using nrITS BLASTn searches. Indeed, we found that out
of the 1154 nrITS sequences labelled as T. jamesii in GenBank, only 220 corresponded to the
authentic T. jamesii. This confusion might have stemmed from having formerly considered
T. jamesii and T. simplex conspecific taxa due to the lack of morphological differences [99].
Nonetheless, differences between these two phycobionts were later found and the distinc-
tion of both species was finally accepted [63,89,100,101]. It is currently acknowledged that
the authentic (type) strain of T. jamesii (UTEX 2233) belongs to the Trebouxia clade A [102],
whereas T. simplex falls within the Trebouxia clade S. It is thus crucial to emphasize that
species identification of Trebouxia cannot rely solely on BLASTn matches. In any study
involving symbiotic microalgae, it is a necessary condition that identifications should
be based on phylogenies encompassing species from all clades, including the 27 species
officially described to date and indicated as references for phylogenetic datasets [103].

Future studies must reveal whether the apparently strict association of mycobiont
members in the R. farinacea group with T. jamesii and T. lynnae is maintained in other
areas of the planet, especially in North America. It would also be essential to examine
whether the different haplotypes of T. jamesii found across its European distribution per-
form differently at the physiological level, and if the differences are related to varying
environmental conditions.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/jof10030206/s1. Figure S1: Biogeographic map of Eu-
rope [27], Figure S2: Bubble chart indicating the distance to the sea (in Km) from each sampling
locality. The series coloured in light green represents Trebouxia lynnae, whereas T. jamesii series is
coloured in dark green. The size of each bubble is proportional to the number of lichen thalli (n)
associated with a given Trebouxia. The increasing scale of n, represented by the smaller bubble to the
bigger one, is displayed above the bubble chart, Figure S3: Single circular phylograms estimated with
RAxML showing the relationships among nrITS sequences downloaded from GenBank (n = 1154) to
evaluate the global distribution of Trebouxia jamesii. The dataset included four T. jamesii haplotypes
obtained in the present study and a representative sequence of a strain of T. jamesii located at the Cul-
ture Collection of Algae of the University of Göttingen, Germany (SAG). Sequences of T. lynnae were
also included in the dataset and Asterochloris mediterranea was used to root phylogenetic trees; for the
sake of clarity, tree representation ignored branch lengths; minute green dots on nodes denote nodal
support (BS ≥ 70%); Table S1: Specimens analyzed in this study with GenBank accession numbers
(in bold) of fungal and algal nrITS and details of the collection location. Including newly sequences
generated in this study, those obtained from specimens studied in Moya et al. [4] and a selection of 58
sequences from the GenBank selected under the search criterion “Trebouxia AND Ramalina farinacea”,
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Table S2: GenBank accession numbers, host, locality, and reference for the Trebouxia species that
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