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1         Research on Nonvascular Epiphytes 

 In the frame of current discussions on the value of forest canopies, a short introduction 
and recent advances of nonvascular epiphyte (NVE) research are presented here 
regarding a novel canopy access facility to study mechanisms and functions of carbon 
and water exchange as well as impacts of climate and land-use change on NVE. 

 Sometimes inconspicuous, but highly diverse and omnipresent in tree tops are 
microorganisms and nonvascular plants occupying plant surfaces (Lakatos  2011 ). 
The communities are composed of bacteria, fungi, cyanobacteria, lichens, algae, and 
bryophytes in variable proportions. The fi rst four groups are generally categorized as 
microbes, whereas the latter are regarded as cryptogams and often subsumed as non-
vascular epiphytes (NVE) due to the dominance of photoautotrophic organisms and 
the lack of lignifi ed vascular water conduction system. They cover almost every spot 
of bark (corticolous) and develop from thin green biofi lms comprising mainly cyano-
bacteria, algae, and fungi with a thickness of less than one millimeter to well visible 
and colorful epiphytic cryptogamic crusts or mats of several centimeters, dominated 
by lichens and bryophytes (Fig.  23.1 ). Biofi lms also occur as epiphylls on the surface 
of long-living and evergreen leaves in the phyllosphere (Coley et al.  1993 ; Furnkranz 
et al.  2008 ; Sonnleitner et al.  2009 ; Rigonato et al.  2012 ). As corticolous and epi-
phyllic photoautotrophic communities, they infl uence important ecological processes 
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such as carbon, nitrogen, and water cycles (reviewed: Rhoades  1995 ; Sillett and 
Antoine  2004 ; Elbert et al.  2012 ); represent a large pool of species diversity 
(e.g., Mandl et al .   2010 ; Sporn et al .   2010 ; Ellis  2012 ); and effect trophic cascades 
as a food resource and as hosts for microbes, protists, and invertebrates in the phyto-
sphere and phyllosphere. Despite their omnipresence and numerous roles occupied 
in the canopy, researchers have focused on macroscopic vascular plants and animals, 
whereas the direct and indirect impacts of NVE remain relatively understudied.

   Most investigations on NVE are restricted to the tree base or lower stem of trees 
although several studies indicate that this limitation may underestimate species 
diversity by 30 % (for lichens in temperate forests; John and Schröck  2001 ) or even 
50 % (for bryophytes in tropical forests; Cornelissen and Gradstein  1990 b; Wolf 
 1995 ; Costa  1999 ; Gradstein et al.  2001 ). In entire vertical assessments of NVE 
assemblages, fallen trees were often examined (Jarman and Kantvilas  1995 ; Fritz 
 2009 ). However, epiphytic surveys for cyanobacteria are scarce (12 species in the 
tropical lowland forest, Singapore, Neustupa and Škaloud  2010 ) as well as for green 
algae, which range between 20 species (temperate forest, Germany, Freystein et al. 
 2008 ) and 40 species (tropical:    Neustupa and Škaloud  2010 ; Lemes-Da-Silva et al. 
 2010 ) mainly from the families of Chlorophyceae, Trebouxiophyceae, and 
Ulvophyceae. Diatoms are common as epiphytes on epiphytic lichens (18 species in 
the tropical  Coenogonium linkii ; Lakatos et al.  2004 ) and also on mosses (Foerster 
 1971 ). Lichen diversity ranges from 36 to 76 species and bryophyte diversity from 
28 to 55 species in Australia (Jarman and Kantvilas  1995 ; Milne and Louwhoff 
 1999 ), but with values of 88–100 bryophyte species reported in tropical lowland 
forests of Guiana and French Guiana (Cornelissen and Gradstein  1990 ; Gradstein 
 1995 ) and 153–190 bryophyte species in tropical montane forests (Wolf  1993 ; 
Gradstein et al .   2001 ). One single tree ( Elaeocarpus ) in Papua New Guinea boasted 
173 lichen species (Aptroot  1997 ). Such high species diversity is one of the reasons 
that most studies on NVE in the canopy occur in tropical canopies, using single 
rope techniques (e.g., Nadkarni  1984 ; Wolf  1995 ; Freiberg and Freiberg  2000 ; 

  Fig. 23.1    Colorful lichen assemblage in the Mata Atlantica, Brazil ( left ), and canopy studies on 
bryophytes in the lowland cloud forest of French Guiana       
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Nadkarni et al.  2004 ; Holz and Gradstein  2005 ; Gehrig-Downie et al .   2011 ), 
walkways, aluminum towers (e.g., Zotz and Winter  1994 ), and construction cranes 
(e.g., Komposch and Hafellner  2000 ). These studies mainly documented species 
distribution, cover, and biomass of NVE. In temperate and boreal regions, several 
studies documented biomass and species distribution on canopies largely consisting 
of conifers (e.g., McCune et al.  1997 ; Clement and Shaw  1999 ; Ellyson and Sillett 
 2003 ; Williams and Sillett  2007 ). One constraint of canopy research is the limitation 
of noninvasive accessibility that permits studying organisms in their natural undis-
turbed environment. This might explain why ecophysiological and long-term studies 
on NVE in the canopy are infrequent (but see Renhorn et al .   1997 ; Zotz and Schleicher 
 2003 ; Zotz et al.  2003 ; Antoine  2004 ; Lakatos et al.  2006 ; Romero et al.  2006 ; 
Gauslaa et al.  2012 ; Pardow and Lakatos  2013 ).  

2     The “Biosphere Tower”: A Novel Canopy Access 
for Long-Term Research on Microbes 
and Nonvascular Epiphytes 

 One critical issue of investigations on microbes and NVE is that most canopy access 
methods are invasive and harm the ensembles of bark-dwelling (corticolous) 
organisms, particularly for long-term studies that require repeated access. To reduce 
the destructive impact of access, a new canopy tower was developed to conduct 
long- term studies. The “Biosphere Tower” (Fig.  23.2 ) is a wooden canopy access 

  Fig. 23.2    A novel canopy    access: the wooden 36 m tall Biosphere Tower – the Biosphere Reserve 
Palatinate Forest–Northern Vosges, Germany       
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tower with mobile cantilevers, installed in a representative old-growth (170 years) 
and commercial oak forest in the Biosphere Reserve Palatinate Forest–Northern 
Vosges, Germany. The construction has a basal area of 3 × 3 m plus 6 platforms each 
ascending 6 m reaching a total heigh of 36 m height. The structure surmounts the 
treetops and the cantilevers of 5–10 m in length reach each strata of adjacent oaks 
( Quercus robur ) and beeches ( Fagus sylvatica ), which comprise economically the 
two most important broadleaf tree species in Europe. To emphasize abiotic canopy 
processes, a micrometeorological monitoring system was installed at the ground 
level, and both within and above the canopy, providing continuous measurements of 
abiotic conditions (e.g., light, temperature, humidity, turbulences), including UV 
and global radiation. All impregnation of the wood was avoided, because volatile 
substances may affect the target organisms of the epiphytic community. This inter-
disciplinary project is a partnership of the University of Kaiserslautern (Departments 
of Plant Ecology and Systematics, and Architecture), the Kaiserslautern forestry 
offi ce, and the Rhineland-Palatinate Foundation for Innovation.

   The Biosphere Tower facilitates long-term research on forest canopy biodiversity, 
ecology, and global climate change with the focus on microbial ecosystems. NVE 
are not often studied in silvicultural forests, despite their economic importance for 
wood production and water balance. Moreover, noninvasive long-term canopy 
research offers new insights into seasonality, succession, and long-term changes. 
Owing to its innovative design (renewable primary products, low-invasive construc-
tion method, microbial canopy research), the Tower will expand the novel fi eld of 
microbial canopy ecology, promote ecologically and economically relevant 
long-term-research in the “silvicultural canopy biosphere,” and provide an attractive 
platform for environmental education.  

3     Mechanisms and Functions of Nonvascular Epiphytes 

 The mechanisms and ecological impacts of NVE are still poorly understood 
(Cornelissen et al.  2007 ). In some ecosystems, they contribute a substantial proportion 
to primary production (Rhoades  1995 ; Lakatos  2011 ; Elbert et al.  2012 ), infl uence 
nutrient fl uxes (Forman  1975 ; Knops et al.  1996 ; Sillett and Antoine  2004 ; Clark 
et al .   2005 ), and promote animal life (Pettersson et al.  1995 ; Richardson et al.  2000 ; 
van der Wal  2006 ). Two main aspects involved in understanding the NVE mecha-
nisms and functions are the exchange of carbon and water. 

 Carbon exchange of NVE is closely bound with water availability. NVE are 
desiccation- tolerant organisms suspending metabolism when dry and recover after 
hydration by liquid water or high humidity (Proctor and Tuba  2002 ). They are capable 
of effi ciently exploiting several liquid water sources such as rain, fog, and dew which 
are absorbed by their whole “plant” surface to activate metabolism and photosyn-
thesis. This independence on permanent water supply enables them to photosynthe-
size and grow at sites inhospitable for vascular plants. Given NVEs’ poikilohydric 
strategy, they successfully inhabit almost all terrestrial habitats from the tropics to 
cold and hot deserts. 
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 The success of their poikilohydric was catalogued by biomass distribution and by 
their role in ecosystem carbon fl uxes. In general, a clear pattern of biomass distribu-
tion occurs in tropical forests: biomass increases with altitude ranging from 10 gm −2  
(relative to branch surface area) at lowland forests to almost 3,000 gm −2  of bryo-
phytes in upper montane forests at 3,700 m a.s.l. (Hofstede et al.  1993 ; Freiberg 
and Freiberg  2000 ). In contrast, the biomass of vascular epiphytes (usually 
between 400 and 900 gm −2 ) seems not to increase with altitude (Freiberg and 
Freiberg  2000 ). Also, patterns of biomass distribution change within the tree – the 
biomass of NVE (dominated by bryophytes) decreases from the branches of the 
inner crown to the periphery of the canopy (Freiberg and Freiberg  2000 ; Romanski 
et al.  2011 ), whereas lichens and biofi lms increase (Werner et al.  2012 ; M. Lakatos 
unpublished data). On a regional level, local studies revealed maximal NVE bio-
mass of around 2,000–16,000 kgha −1  relative to ground surface area in tropical 
montane forests (Coxson et al.  1992 ; Köhler et al.  2007 ; Werner et al.  2012 ) 
compared to boreal and coastal forests where NVE biomass of up to 4,220 kgha −1  
was reported (Rhoades  1981 ). On an ecosystem level, calculated NVE biomass per 
biome was calculated to range from 470 to 2,120 kgha −1  relative to ground surface 
area (Elbert et al.  2012 ). A global extrapolation of NVE approximates ~3.1 Pg 
(1.4–6.5 Pg) dry biomass on the basis of an global epiphytic area of 30.57 × 10 12  m 2  
(Friedl et al.  2002 ). The calculated carbon uptake fl uxes of NVE range from 
5.8 gm −2  year −1  in extratropical forests to 10 gm −2 year −1  in tropical forests and corre-
spond to an annual carbon net uptake of 0.45–0.95 Pgyr −1  (Elbert et al.  2012 ). In an 
ecosystem comparison, the total global carbon net uptake for NVE of 1.4 Pgyr −1  
would be in the same range as that for tundra (1.83 Pgyr −1 ) and desert ecosystem 
(1.72 Pgyr −1 ) (Cleveland et al .   1999 ), accounting for 2.5 % of the total net primary 
production of terrestrial vegetation (56 Pgyr −1 ; Zhao et al.  2005 ). By these rough 
calculations, NVE could compensate for almost half of the global annual carbon 
release from biomass burning (3.6 Pgyr −1 ). Although these calculations are based on 
very few data, the function of NVE as part of global carbon fl uxes nevertheless has 
been underestimated until now. 

 The contribution of NVE to the hydrological cycle is also often overlooked 
(Hölscher et al.  2004 ; Köhler et al.  2007 ). Poikilohydric NVE exploit nearly every 
available water sources and absorb rain, fog, dew, and vapor over their entire “plant” 
surface to activate metabolism and photosynthesis. Many lichens and bryophytes 
signifi cantly alter water contents (WC) by as much as 250–400 % of dry weight 
(DW) in green algal lichens (Blum  1973 ; Rundel  1988 ), 600–2,000 % DW in cya-
nolichens (Lange et al.  1993 ), and 2,500 % DW in bryophytes (Proctor et al.  1998 ). 
Optimal photosynthetic capacity is achieved between full turgor and turgor loss 
of the cells, varying between life-forms and species from 100 % to 2,000 % DW 
(e.g., Proctor et al.  1998 ; Hajek and Beckett  2008 ). During desiccation, photosyn-
thesis decreases until cessation is reached at low water potential (−22 MPa) with a 
critical water content of 30–70 % DW for bryophytes or even down at −38 MPa for 
lichens (Nash III et al.  1990 ) where WC ranges between 10 % and 20 % DW. For 
the reactivation of photosynthesis, green algae (Edlich  1936 ; Bertsch  1966 ) and 
green algal lichens require only relative humidity between 75 % and 85 % RH, 
corresponding to water potential of −37 to −22 MPa (Lakatos  2011 ). In contrast, 
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it was assumed that cyanobacteria (Lange et al.  1994 ) and bryophytes need liquid 
water for photosynthetic reactivation (Green et al.  1994 ). However, recent studies on 
bryophytes demonstrated for almost all investigated tropical mosses and liverworts 
the recovery of PSII already at around 85 % relative humidity (RH) (−22 MPa; 
Pardow and Lakatos  2013 ). The exchange of vapor with the organism occurs quite 
fast in NVE. Equilibration experiments during desiccation at 60 % RH and traced 
by the stable isotope 18 O demonstrated total exchange of thallus water with vapor 
within only 2 h for the fruticose  Usnea fi lipendula  and within 3–4 h for other lichen 
growth forms (Hartard et al.  2009 ). In comparison, the epiphytic vascular plant 
 Tillandsia usneoides  needed days for total equilibrium and only under RH above 
95 % (Helliker and Griffi ths  2007 ). Due to this rapid equilibration, lichens and other 
NVE may serve as prospective long-term proxies for water sources (Hartard et al. 
 2009 ). Moreover, their use as indicators for relative humidity and precipitation is 
important (Pardow et al.  2010 ; Obregon et al.  2011 ; Karger et al.  2012 ; Pardow and 
Lakatos  2013 ). The exploitation of vapor as a water source has several advantages: 
(i) the loss of CO 2  by respiration can be compensated to some degree; (ii) when 
liquid water becomes available, total recovery of metabolism happens faster; and 
(iii) some organisms perform photosynthesis with increasing effi ciency at equilibrium 
with vapor because the absorption of liquid water reduces CO 2  diffusion and leads 
to higher respiration rates of the fungal partner (Pintado and Sancho  2002 ). Besides 
vapor, recent insights indicate that dew is another important water source. In particu-
lar, NVE tightly attached to the bark benefi t from dew condensation on the tree 
surface supplying up to 0.7 mm H 2 O day −1  or  c.  176 mm year −1  (Lakatos et al .   2012 ). 
This is comparable with dew rates in the midlatitudes of  c.  0.5 mm per 10-h night 
(Jacobs et al.  2008 ) and much more than stem water fl ow calculated for this area of 
c. 19 mm year −1  (Jetten  1996 ). Due to delayed radiative loss and heat storage of the 
tree stem, dew formation occurs on stem and NVE surfaces until midday. This novel 
phenomenon was studied recently in the perhumid tropics and predicted to occur 
worldwide in forests (Lakatos et al.  2012 ). 

 Both water exchange processes and biomass in NVE impacts the hydrology not 
only in tropical forests but also in boreal, temperate, and coastal (rain) forests. Water 
(as rain, fog, or dew) is intercepted by the entire tree canopy (made up of foliage, 
stem, branches, and epiphytes) and slowly drops or fl ows to the ground (stem fl ow 
and throughfall), where it is absorbed, retained, and evaporated by the NVE. 
In tropical ecosystems   , 273 and 724 mm year −1  are intercepted by canopy epiphytes 
in a submontane and in a cloud forest of Tanzania, representing 10 % and 18 % 
of annual precipitation (Pocs  1980 ,  1982 ). Even 34 % annual interception rates 
were maintained by NVE in a submontane rain forest of Uganda (Hopkins  1960 ). 
The absorbed amount ranges from 2 % to 61 % of the total precipitation at the Central 
Cordillera of Panamá (Cavelier et al.  1996 ) and from 10 % to 93 % in elfi n cloud 
forests of Venezuela and Colombia (Cavelier and Goldstein  1989 ). The equivalent 
of approximately 0.5 mm of cloud water droplets may be suffi cient to recharge the 
water-holding capacity of green algal lichens and pendent mosses (Leon-Vargas 
et al.  2006 ). NVE can absorb twice to twentyfold of their dry weight (or fourfold to 
fi vefold as community ensemble; Pocs  1982 ; Hölscher et al.  2004 ), providing an 
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essential “canopy water pool.” In the temperate forest of Germany, a single 200-year-old 
oak tree ( Quercus robur ) harbored 8–25 kg of NVE dry biomass that retained 
100–400 l of intercepted water; in the tropical mountain forest, this amount could 
be at least one magnitude higher. Thus, NVE function as “capacitors” infl uencing 
the discharge of precipitation, thereby ameliorating erosion and fl oods as well as 
water storage (Still et al .   1999 ; Weathers  1999 ). Intercepted water is discharged by 
NVE long after precipitation has stopped and contributes to high humidity within 
the canopy and understory (e.g. Perry  1984 ; Veneklaas et al.  1990 ). For example, 
epiphytic bryophytes in a Costa Rican montane cloud forest evaporated up to 2.5-fold 
of their dry weight biomass in 3 days, exceeding evaporation of canopy humus 
(Köhler et al.  2007 ). The direct ecological infl uence of this humidity input on stomatal 
opening of canopy leaves and thereby photosynthesis and transpiration in forests 
remains unknown. 

 The mechanism and function of NVE signifi cantly contribute to canopy ecology, 
especially micro- and meso-fl uxes of carbon and water. Ecophysiological studies 
of NVE, nonetheless, will likely reveal that secrets and surprises still remain to be 
discovered in the frontier of forest canopies.  

4     Risks of Land-Use Change and Global Warming 

 Climate change is altering the amount and distribution of precipitation and cloud 
water in many forests (Still et al.  1999 ; Solomon et al.  2007 ). Further impacts of 
global change promote ongoing deforestation, fragmentation, and forest disturbance 
(Sala et al.  2000 ). These processes affect microhabitats of remaining forest patches 
and trees by increasing penetration of light and wind (Murcia  1995 ; Laurance and 
Williamson  2001 ; Pohlman et al.  2007 ). As a consequence, microhabitats in forest 
canopies are becoming progressively drier, with moist, shaded microhabitats con-
fi ned to lower parts of the tree and interior of forest patches. Epiphytes are sensitive 
to these environmental changes since they live at the interface between the terrestrial 
and atmospheric environment (Benzing  1998 ). 

 Changes in NVE communities are expected to be most pronounced in areas of 
high moisture availability (Zotz and Bader  2009 ), where organisms are poorly 
adapted to droughts. Sensitive species will respond to increasing dryness by 
migrating to moister microhabitats further down the tree (Acebey et al.  2003 ; 
Alvarenga et al.  2010 ; Gradstein and Sporn  2010 ) or shifting to higher altitudes 
(Nadkarni and Solano  2002 ; Zotz and Bader  2009 ). In an undisturbed evergreen 
lowland moist rain forest in French Guiana, desiccation tolerance of bryophytes 
indicated that one- third of the canopy species would not tolerate extended drought 
periods and are expected to migrate to more humid understory microhabitats 
(Pardow & Lakatos  2013 ). Species from the understory are regarded as particu-
larly vulnerable to forest disturbance since they have no refugia to migrate into 
(Gradstein  1992 ) and are highly desiccation sensitive (Pardow and Lakatos  2013 ). 
Zotz and Bader ( 2009 ) predict that an increase in temperature in tropical lowland 
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forests by only a few degrees Celsius would increase metabolism and nocturnal 
respiration rates of epiphytic bryophytes and lichens to such a degree that compen-
sation by photosynthesis during the day is highly challenged and the risk of mass 
extinctions in this habitat quite likely. 

 Rising temperatures, on the other hand, can also have a positive effect on species 
distribution by extending the range of suitable habitats. Ranges of subtropical epi-
phytic lichens and Atlantic and Mediterranean bryophytes, for example, are cur-
rently expanding as they migrate towards Central Europe (Frahm  2001 ; Aptroot and 
van Herk  2007 ). 

 In sum, NVE are sensitive to environmental change and apparently respond by 
migrating to more suitable microhabitats within the tree or along elevational gradi-
ents where possible.    While the change in NVE communities and potential loss of 
biodiversity are documented (Aptroot and van Herk  2007 ; Zotz and Bader  2009 ; 
Tuba et al.  2011 ), less attention is given to functional consequences of these changes. 
There is yet little understanding of how NVE contribute to functional diversity and 
resource provision in forest canopies. For example, can NVE infl uence host tree 
health and pathogen defense through secondary compounds? Will changes in NVE 
affect the abiotic and biotic canopy environment? Figure  23.3  shows how small-
scale differences in moisture supply affect the functional diversity of epiphytic bryo-
phytes in a tropical lowland forest (Pardow et al.  2012 ). The distribution of seven 
life-forms is shown across microhabitats within the tree for two adjacent forests, 
tropical lowland rain forest and tropical lowland cloud forest (Gradstein et al.  2010 ). 
These forests share the same meso-climate and differ only in small-scale moisture 
supply (i.e., cloud forests have frequent early morning fog events (Obregon et al .  
 2011 )). If this represents a model scenario of drier environmental conditions transi-
tioning from lowland cloud forest to lowland rain forest, then life-form composition 
will change, particularly in the canopy strata. Some life-forms will dissappear or 
respond by migration to lower – more humid – microhbaitats. This leads to a loss of 
biocomplexity in strata of drier canopies by harboring fewer and less structurally 
diverse life-forms (mainly mats). The loss of certain “bryophyte structures” is likely 
to correlate with a loss of certain microhabitats and other resources confi ned to a 
particular life-form. Future research should be directed towards the ecological impact 
of these changes in functional diversity. The newly designed Biosphere Tower is 
ideal for noninvasive studies of the NVE community with respect to climate change.

5        Conclusion 

 This overview of recent outcomes in canopy research on NVE shows knowledge 
gaps on three topics: (i) for the most part, long-term investigations on seasonality, 
succession, and long-term changes are missing, (ii) the research in silvicultural tree 
canopies is underrepresented, and (iii) ecological and physiological measurements 
in situ are scarce. The consequences of climate and land-use change for NVE and 
thereby their infl uence on forest structural diversity, interactions, and carbon and 
water balance remain unknown.     
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  Fig. 23.3    Percent cover of 
bryophyte life-forms at each 
height zone in a lowland 
cloud forest ( gray line ) and 
lowland rain forest ( black 
line ) at French Guiana 
(Modifi ed after Pardow et al. 
 2012 )       
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